ترغب بنشر مسار تعليمي؟ اضغط هنا

Two dimensional ice mapping of molecular cores

400   0   0.0 ( 0 )
 نشر من قبل Jennifer Noble
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present maps of the column densities of H$_2$O, CO$_2$, and CO ices towards the molecular cores B~35A, DC~274.2-00.4, BHR~59, and DC~300.7-01.0. These ice maps, probing spatial distances in molecular cores as low as 2200~AU, challenge the traditional hypothesis that the denser the region observed, the more ice is present, providing evidence that the relationships between solid molecular species are more varied than the generic picture we often adopt to model gas-grain chemical processes and explain feedback between solid phase processes and gas phase abundances. We present the first combined solid-gas maps of a single molecular species, based upon observations of both CO ice and gas phase C$^{18}$O towards B~35A, a star-forming dense core in Orion. We conclude that molecular species in the solid phase are powerful tracers of small scale chemical diversity, prior to the onset of star formation. With a component analysis approach, we can probe the solid phase chemistry of a region at a level of detail greater than that provided by statistical analyses or generic conclusions drawn from single pointing line-of-sight observations alone.



قيم البحث

اقرأ أيضاً

Tracing dust in small dense molecular cores is a powerful tool to study the conditions required for ices to form during the pre-stellar phase. To study these environments, five molecular cores were observed: three with ongoing low-mass star formation (B59, B335, and L483) and two starless collapsing cores (L63 and L694-2). Deep images were taken in the infrared JHK bands with the United Kingdom Infrared Telescope (UKIRT) WFCAM (Wide Field Camera) instrument and IRAC channels 1 and 2 on the Spitzer Space Telescope. These five photometric bands were used to calculate extinction along the line of sight toward background stars. After smoothing the data, we produced high spatial resolution extinction maps ($sim$13-29) . The maps were then projected into the third dimension using the AVIATOR algorithm implementing the inverse Abel transform. The volume densities of the total hydrogen were measured along lines of sight where ices (H$_2$O, CO, and CH$_3$OH) have previously been detected. We find that lines of sight with pure CH$_3$OH or a mixture of CH$_3$OH with CO have maximum volume densities above 1.0$times$10$^5$ cm$^{-3}$. These densities are only reached within a small fraction of each of the cores ($sim$0.3-2.1%). CH$_3$OH presence may indicate the onset of complex organic molecule formation within dense cores and thus we can constrain the region where this onset can begin. The maximum volume densities toward star-forming cores in our sample ($sim$1.2-1.7$times$10$^6$ cm$^{-3}$) are higher than those toward starless cores ($sim$3.5-9.5$times$10$^5$ cm$^{-3}$).
In interstellar clouds the deposition of water ice onto grains only occurs at visual extinctions above some threshold value A_th. At extinctions greater than A_th there is a (near-linear) correlation between the inferred column density of the water i ce and A_V. For individual cloud complexes such as Taurus, Serpens and Rho-Ophiuchi, A_th and the gradients of the correlation are very similar along all lines of sight. We have investigated the origin of this phenomenon, with careful consideration of the various possible mechanisms that may be involved and have applied a full chemical model to analyse the behaviours and sensitivities in quiescent molecular clouds. Our key results are: (i) the ubiquity of the phenomenon points to a common cause, so that the lines of sight probe regions with similar, advanced, chemical and dynamical evolution, (ii) for Taurus and Serpens; A_th and the slope of the correlation can be explained as resulting from the balance of freeze-out of oxygen atoms and photodesorption of H2O molecules. No other mechanism can satisfactorily explain the phenomenon, (iii) A_th depends on the local density, suggesting that there is a correlation between local volume density and column density, (iv) the different values of A_th for Taurus and Serpens are probably due to variations in the local mean radiation field strength, (v) most ice is accreted onto grains that are initially very small (<0.01 microns), and (vi) the very high value of A_th observed in Rho-Ophiuchi cannot be explained in the same way, unless there is complex microstructure and/or a modification to the extinction characteristics.
We present the results of on-the-fly mapping observations of 44 fields containing 107 SCUBA-2 cores in the emission lines of molecules, N$_2$H$^+$, HC$_3$N, and CCS at 82$-$94 GHz using the Nobeyama 45-m telescope. This study aimed at investigating t he physical properties of cores that show high deuterium fractions and might be close to the onset of star formation. We found that the distributions of the N$_2$H$^+$ and HC$_3$N line emissions are approximately similar to that of 850-$mu$m dust continuum emission, whereas the CCS line emission is often undetected or is distributed in a clumpy structure surrounding the peak position of the 850-$mu$m dust continuum emission. Occasionally (12%), we observe the CCS emission which is an early-type gas tracer toward the young stellar object, probably due to local high excitation. Evolution toward star formation does not immediately affect nonthermal velocity dispersion.
135 - Sami Dib 2010
We study the rotational properties of magnetized and self-gravitating molecular cloud cores formed in 2 very high resolution 3D molecular cloud simulations.The simulations have been performed using the code RAMSES at an effective resolution of 4096^3 .One simulation represents a mildly magnetically-supercritical cloud and the other a strongly magnetically-supercritical cloud.A noticeable difference between the 2 simulations is the core formation efficiency (CFE) of the high density cores.In the strongly supercritical simulations the CFE is ~33 % per free-fall time of the cloud tff,cl, whereas in the mildly supercritical simulations this value goes down to ~6%/tff,cl. A comparison of the intrinsic specific angular momentum j3D distributions of the cores with the distribitions of j2D derived using synthetic 2D velocity maps of the cores,shows that the synthetic observations tend to overestimate the true value of j by a factor of ~10.The origin of this discrepancy lies in the fact that contrary to the intrinsic determination which sums up the individual gas parcels contributions to j, the determination of j using the observational procedure which is based on a measurement on the global velocity gradient under the hypothesis of uniform rotation smoothes out the complex fluctuations present in the 3D velocity field. Our results provide a natural explanation for the discrepancy by a factor ~10 observed between the intrinsic 3D distributions of j and the corresponding distributions derived in real observations.We suggest that measurements of j which are based on the measurement of the observed global velocity gradients may need to be reduced by a factor of ~10 in order to derive a more accurate estimate of j in the cores.
We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments ($lambda$ Orionis, Orion A, B, Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45-m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N$_2$H$^+$, c-C$_3$H$_2$) and deuterated molecules (e.g., N$_2$D$^+$, DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores ($>$1 kpc). For $lambda$ Orionis, Orion A, and B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا