ترغب بنشر مسار تعليمي؟ اضغط هنا

Defending Touch-based Continuous Authentication Systems from Active Adversaries Using Generative Adversarial Networks

119   0   0.0 ( 0 )
 نشر من قبل Rajesh Kumar
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous studies have demonstrated that commonly studied (vanilla) touch-based continuous authentication systems (V-TCAS) are susceptible to population attack. This paper proposes a novel Generative Adversarial Network assisted TCAS (G-TCAS) framework, which showed more resilience to the population attack. G-TCAS framework was tested on a dataset of 117 users who interacted with a smartphone and tablet pair. On average, the increase in the false accept rates (FARs) for V-TCAS was much higher (22%) than G-TCAS (13%) for the smartphone. Likewise, the increase in the FARs for V-TCAS was 25% compared to G-TCAS (6%) for the tablet.



قيم البحث

اقرأ أيضاً

The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, ofte n followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.
Physical layer authentication relies on detecting unique imperfections in signals transmitted by radio devices to isolate their fingerprint. Recently, deep learning-based authenticators have increasingly been proposed to classify devices using these fingerprints, as they achieve higher accuracies compared to traditional approaches. However, it has been shown in other domains that adding carefully crafted perturbations to legitimate inputs can fool such classifiers. This can undermine the security provided by the authenticator. Unlike adversarial attacks applied in other domains, an adversary has no control over the propagation environment. Therefore, to investigate the severity of this type of attack in wireless communications, we consider an unauthorized transmitter attempting to have its signals classified as authorized by a deep learning-based authenticator. We demonstrate a reinforcement learning-based attack where the impersonator--using only the authenticators binary authentication decision--distorts its signals in order to penetrate the system. Extensive simulations and experiments on a software-defined radio testbed indicate that at appropriate channel conditions and bounded by a maximum distortion level, it is possible to fool the authenticator reliably at more than 90% success rate.
The surge in the internet of things (IoT) devices seriously threatens the current IoT security landscape, which requires a robust network intrusion detection system (NIDS). Despite superior detection accuracy, existing machine learning or deep learni ng based NIDS are vulnerable to adversarial examples. Recently, generative adversarial networks (GANs) have become a prevailing method in adversarial examples crafting. However, the nature of discrete network traffic at the packet level makes it hard for GAN to craft adversarial traffic as GAN is efficient in generating continuous data like image synthesis. Unlike previous methods that convert discrete network traffic into a grayscale image, this paper gains inspiration from SeqGAN in sequence generation with policy gradient. Based on the structure of SeqGAN, we propose Attack-GAN to generate adversarial network traffic at packet level that complies with domain constraints. Specifically, the adversarial packet generation is formulated into a sequential decision making process. In this case, each byte in a packet is regarded as a token in a sequence. The objective of the generator is to select a token to maximize its expected end reward. To bypass the detection of NIDS, the generated network traffic and benign traffic are classified by a black-box NIDS. The prediction results returned by the NIDS are fed into the discriminator to guide the update of the generator. We generate malicious adversarial traffic based on a real public available dataset with attack functionality unchanged. The experimental results validate that the generated adversarial samples are able to deceive many existing black-box NIDS.
Over the past several years, the electrocardiogram (ECG) has been investigated for its uniqueness and potential to discriminate between individuals. This paper discusses how this discriminatory information can help in continuous user authentication b y a wearable chest strap which uses dry electrodes to obtain a single lead ECG signal. To the best of the authors knowledge, this is the first such work which deals with continuous authentication using a genuine wearable device as most prior works have either used medical equipment employing gel electrodes to obtain an ECG signal or have obtained an ECG signal through electrode positions that would not be feasible using a wearable device. Prior works have also mainly dealt with using the ECG signal for identification rather than verification, or dealt with using the ECG signal for discrete authentication. This paper presents a novel algorithm which uses QRS detection, weighted averaging, Discrete Cosine Transform (DCT), and a Support Vector Machine (SVM) classifier to determine whether the wearer of the device should be positively verified or not. Zero intrusion attempts were successful when tested on a database consisting of 33 subjects.
Speech is a means of communication which relies on both audio and visual information. The absence of one modality can often lead to confusion or misinterpretation of information. In this paper we present an end-to-end temporal model capable of direct ly synthesising audio from silent video, without needing to transform to-and-from intermediate features. Our proposed approach, based on GANs is capable of producing natural sounding, intelligible speech which is synchronised with the video. The performance of our model is evaluated on the GRID dataset for both speaker dependent and speaker independent scenarios. To the best of our knowledge this is the first method that maps video directly to raw audio and the first to produce intelligible speech when tested on previously unseen speakers. We evaluate the synthesised audio not only based on the sound quality but also on the accuracy of the spoken words.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا