ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structure of Chromium Trihalides beyond Density Functional Theory

79   0   0.0 ( 0 )
 نشر من قبل Swagata Acharya
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the electronic band structure of free standing monolayers of chromium trihalides, CrXtextsubscript{3}{, X= Cl, Br, I}, within an advanced emph{ab-initio} theoretical approach based in the use of Greens function functionals. We compare the local density approximation with the quasi-particle self-consistent emph{GW} approximation (QSemph{GW}) and its self-consistent extension (QS$Gwidehat{W}$) by solving the particle-hole ladder Bethe-Salpeter equations to improve the effective interaction emph{W}. We show that at all levels of theory, the valence band consistently changes shape in the sequence Cl{textrightarrow}Br{textrightarrow}I, and the valence band maximum shifts from the M point to the $Gamma$ point. However, the details of the transition, the one-particle bandgap, and the eigenfunctions change considerably going up the ladder to higher levels of theory. The eigenfunctions become more directional, and at the M point there is a strong anisotropy in the effective mass. Also the dynamic and momentum dependent self energy shows that QS$Gwidehat{W}$ adds to the localization of the systems in comparison to the QSemph{GW} thereby leading to a narrower band and reduced amount of halogens in the valence band manifold.

قيم البحث

اقرأ أيضاً

The electronic structure of double perovskite Pr2MnNiO6 is studied using core x-ray photoelectron spectroscopy and x-ray absorption spectroscopy. The 2p x-ray absorption spectra show that Mn and Ni are in 2+ and 4+ states respectively. Using charge t ransfer multiplet analysis of Ni and Mn 2p XPS spectra, we find charge transfer energies {Delta} of 3.5 and 2.5 eV for Ni and Mn respectively. The ground state of Ni2+ and Mn4+ reveal a higher d electron count of 8.21 and 3.38 respectively as compared to the atomic values of 8.00 and 3.00 respectively thereby indicating the covalent nature of the system. The O 1s edge absorption spectra reveal a band gap of 0.9 eV which is comparable to the value obtained from first principle calculations for U-J >= 2 eV. The density of states clearly reveal a strong p-d type charge transfer character of the system, with band gap proportional to average charge transfer energy of Ni2+ and Mn4+ ions.
We present a review of the basic ideas and techniques of the spectral density functional theory which are currently used in electronic structure calculations of strongly-correlated materials where the one-electron description breaks down. We illustra te the method with several examples where interactions play a dominant role: systems near metal-insulator transition, systems near volume collapse transition, and systems with local moments.
63 - N. Helbig , J.I. Fuks , M. Casula 2011
We present a local density approximation (LDA) for one-dimensional (1D) systems interacting via the soft-Coulomb interaction based on quantum Monte-Carlo calculations. Results for the ground-state energies and ionization potentials of finite 1D syste ms show excellent agreement with exact calculations, obtained by exploiting the mapping of an $N$-electron system in $d$ dimensions, onto a single electron in $Ntimes d$ dimensions properly symmetrized by the Young diagrams. We conclude that 1D LDA is of the same quality as its three-dimensional (3D) counterpart, and we infer conclusions about 3D LDA. The linear and non-linear time-dependent responses of 1D model systems using LDA, exact exchange, and the exact solution are investigated and show very good agreement in both cases, except for the well known problem of missing double excitations. Consequently, the 3D LDA is expected to be of good quality beyond linear response. In addition, the 1D LDA should prove useful in modeling the interaction of atoms with strong laser fields, where this specific 1D model is often used.
We present a method to correct the magnetic properties of itinerant systems in local spin density approximation (LSDA) and we apply it to the ferromagnetic-paramagnetic transition under pressure in a typical itinerant system, Ni$_{3}$Al. We obtain a scaling of the critical fluctuations as a function of pressure equivalent to the one obtained within Moryias theory. Moreover we show that in this material the role of the bandstructure is crucial in driving the transition. Finally we calculate the magnetic moment as a function of pressure, and find that it gives a scaling of the Curie temperature that is in good agreement with the experiment. The method can be easily extended to the antiferromagnetic case and applied, for instance, to the Fe-pnictides in order to correct the LSDA magnetic moment.
We outline a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous external potentials and electron-electron interactions on an equal footing. The theory is able to account for the the unu sual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا