ﻻ يوجد ملخص باللغة العربية
The electronic structure of double perovskite Pr2MnNiO6 is studied using core x-ray photoelectron spectroscopy and x-ray absorption spectroscopy. The 2p x-ray absorption spectra show that Mn and Ni are in 2+ and 4+ states respectively. Using charge transfer multiplet analysis of Ni and Mn 2p XPS spectra, we find charge transfer energies {Delta} of 3.5 and 2.5 eV for Ni and Mn respectively. The ground state of Ni2+ and Mn4+ reveal a higher d electron count of 8.21 and 3.38 respectively as compared to the atomic values of 8.00 and 3.00 respectively thereby indicating the covalent nature of the system. The O 1s edge absorption spectra reveal a band gap of 0.9 eV which is comparable to the value obtained from first principle calculations for U-J >= 2 eV. The density of states clearly reveal a strong p-d type charge transfer character of the system, with band gap proportional to average charge transfer energy of Ni2+ and Mn4+ ions.
We report the formation of a non-magnetic band insulator at the isopolar interface between the antiferromagnetic Mott-Hubbard insulator LaTiO3 and the antiferromagnetic charge transfer insulator LaFeO3. By density functional theory calculations, we f
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio
We explore the electronic band structure of free standing monolayers of chromium trihalides, CrXtextsubscript{3}{, X= Cl, Br, I}, within an advanced emph{ab-initio} theoretical approach based in the use of Greens function functionals. We compare the
We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show
A combined experimental and theoretical investigation of the electronic structure of the archetypal oxide heterointerface system LaAlO3 on SrTiO3 is presented. High-resolution, hard x-ray photoemission is used to uncover the occupation of Ti 3d state