ﻻ يوجد ملخص باللغة العربية
We outline a Kohn-Sham-Dirac density-functional-theory (DFT) scheme for graphene sheets that treats slowly-varying inhomogeneous external potentials and electron-electron interactions on an equal footing. The theory is able to account for the the unusual property that the exchange-correlation contribution to chemical potential increases with carrier density in graphene. Consequences of this property, and advantages and disadvantages of using the DFT approach to describe it, are discussed. The approach is illustrated by solving the Kohn-Sham-Dirac equations self-consistently for a model random potential describing charged point-like impurities located close to the graphene plane. The influence of electron-electron interactions on these non-linear screening calculations is discussed at length, in the light of recent experiments reporting evidence for the presence of electron-hole puddles in nearly-neutral graphene sheets.
We develop a density functional treatment of non-interacting abelian anyons, which is capable, in principle, of dealing with a system of a large number of anyons in an external potential. Comparison with exact results for few particles shows that the
We propose a lattice density-functional theory for {it ab initio} quantum chemistry or physics as a route to an efficient approach that approximates the full configuration interaction energy and orbital occupations for molecules with strongly-correla
Quantum embedding based on the (one-electron reduced) density matrix is revisited by means of the unitary Householder transformation. While being exact and equivalent to (but formally simpler than) density matrix embedding theory (DMET) in the non-in
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional
The response of a one-dimensional fermion system is investigated using Density Functional Theory (DFT) within the Local Density Approximation (LDA), and compared with exact results. It is shown that DFT-LDA reproduces surprisingly well some of the ch