ﻻ يوجد ملخص باللغة العربية
A new scheme for communication between overset grids using subcells and Weighted Essentially Non Oscillatory (WENO) reconstruction for two-dimensional problems has been proposed. The effectiveness of this procedure is demonstrated using the discontinuous Galerkin method (DGM). This scheme uses WENO reconstruction using cell averages by dividing the immediate neighbors into subcells to find the degrees of freedom in cells near the overset interface. This also has the added advantage that it also works as a limiter if a discontinuity passes through the overset interface. Accuracy tests to demonstrate the maintenance of higher order are provided. Results containing shocks are also provided to demonstrate the limiter aspect of the data communication procedure.
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analy
In this paper, we generalize the compact subcell weighted essentially non oscillatory (CSWENO) limiting strategy for Runge-Kutta discontinuous Galerkin method developed recently by us in 2021 for structured meshes to unstructured triangular meshes. T
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As the approximation space, it is applied to the discontinuous Galerkin methods with the u
We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and non-linear elliptic partial differential equations. The scheme constitutes the foundation of the elliptic solver for the SpECTRE numerical r
In this paper, we present a unified analysis of the superconvergence property for a large class of mixed discontinuous Galerkin methods. This analysis applies to both the Poisson equation and linear elasticity problems with symmetric stress formulati