ﻻ يوجد ملخص باللغة العربية
Discontinuous Galerkin (DG) methods are extensions of the usual Galerkin finite element methods. Although there are vast amount of studies on DG methods, most of them have assumed shape-regularity conditions on meshes for both theoretical error analysis and practical computations. In this paper, we present a new symmetric interior penalty DG scheme with a modified penalty term. We show that, without imposing the shape-regularity condition on the meshes, the new DG scheme inherits all of the good properties of standard DG methods, and is thus robust on anisotropic meshes. Numerical experiments confirm the theoretical error estimates obtained.
In this paper we consider a level set reinitialization technique based on a high-order, local discontinuous Galerkin method on unstructured triangular meshes. A finite volume based subcell stabilization is used to improve the nonlinear stability of t
We present a discontinuous Galerkin internal-penalty scheme that is applicable to a large class of linear and non-linear elliptic partial differential equations. The scheme constitutes the foundation of the elliptic solver for the SpECTRE numerical r
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As the approximation space, it is applied to the discontinuous Galerkin methods with the u
We introduce a new stabilization for discontinuous Galerkin methods for the Poisson problem on polygonal meshes, which induces optimal convergence rates in the polynomial approximation degree $p$. In the setting of [S. Bertoluzza and D. Prada, A poly
A new scheme for communication between overset grids using subcells and Weighted Essentially Non Oscillatory (WENO) reconstruction for two-dimensional problems has been proposed. The effectiveness of this procedure is demonstrated using the discontin