ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce a game that allows one to assess the potential loss of efficiency induced by a decentralized control or local management of a global epidemic. Each player typically represents a region or a country which is assumed to choose its control action to implement a tradeoff between socioeconomic aspects and the health aspect. We conduct the Nash equilibrium analysis of this game. Since the analysis is not trivial in general, sufficient conditions for existence and uniqueness are provided. Then we quantify through numerical results the loss induced by decentralization, measured in terms of price of anarchy (PoA) and price of connectedness (PoC). These results allow one to clearly identify scenarios where decentralization is acceptable or not regarding to the retained global efficiency measures.
In this paper we propose a novel SEIR stochastic epidemic model. A distinguishing feature of this new model is that it allows us to consider a set up under general latency and infectious period distributions. To some extent, queuing systems with infi
We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: w
In this early draft, we describe a decentralized, app-based approach to COVID-19 vaccine distribution that facilitates zero knowledge verification, dynamic vaccine scheduling, continuous symptoms reporting, access to aggregate analytics based on popu
Since the recent introduction of several viable vaccines for SARS-CoV-2, vaccination uptake has become the key factor that will determine our success in containing the COVID-19 pandemic. We argue that game theory and social network models should be u
Currently, drones represent a promising technology for combating Coronavirus disease 2019 (COVID-19) due to the transport of goods, medical supplies to a given target location in the quarantine areas experiencing an epidemic outbreak. Drone missions