ﻻ يوجد ملخص باللغة العربية
Currently, drones represent a promising technology for combating Coronavirus disease 2019 (COVID-19) due to the transport of goods, medical supplies to a given target location in the quarantine areas experiencing an epidemic outbreak. Drone missions will increasingly rely on drone collaboration, which requires the drones to reduce communication complexity and be controlled in a decentralized fashion. Blockchain technology becomes a must in industrial applications because it provides decentralized data, accessibility, immutability, and irreversibility. Therefore, Blockchain makes data public for all drones and enables drones to log information concerning world states, time, location, resources, delivery data, and drone relation to all neighbors drones. This paper introduces decentralized independent multi-drones to accomplish the task collaboratively. Improving blockchain with a consensus algorithm can improve network partitioning and scalability in order to combat COVID-19. The multi-drones task is to combat COVID-19 via monitoring and detecting, social distancing, sanitization, data analysis, delivering goods and medical supplies, and announcement while avoiding collisions with one another. We discuss End to End (E2E) delivery application of combination blockchain and multi-drone in combating COVID-19 and beyond future pandemics. Furthermore, the challenges and opportunities of our proposed framework are highlighted.
This conceptual paper overviews how blockchain technology is involving the operation of multi-robot collaboration for combating COVID-19 and future pandemics. Robots are a promising technology for providing many tasks such as spraying, disinfection,
The beginning of 2020 has seen the emergence of coronavirus outbreak caused by a novel virus called SARS-CoV-2. The sudden explosion and uncontrolled worldwide spread of COVID-19 show the limitations of existing healthcare systems in timely handling
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. It is similar to influenza viruses and raises concerns through alarming levels of spread and severity resulting in an ongoing pandemic worldwide. Within
The outbreak of COVID-19 pandemic has exposed an urgent need for effective contact tracing solutions through mobile phone applications to prevent the infection from spreading further. However, due to the nature of contact tracing, public concern on p
In this paper we propose a novel SEIR stochastic epidemic model. A distinguishing feature of this new model is that it allows us to consider a set up under general latency and infectious period distributions. To some extent, queuing systems with infi