ﻻ يوجد ملخص باللغة العربية
We show that, by an appropriate choice of auxiliary fields and exact integration of the phonon degrees of freedom, it is possible to define a sign-free path integral for the so called Hubbard-Holstein model at half-filling. We use a statistical method, based on an accelerated and efficient Langevin dynamics, for evaluating all relevant correlation functions of the model. Preliminary calculations at $U/t=4$ and $U/t=1$, for $omega_0/t=1$, indicate a quite extended region around $U simeq {g^2 over omega_0}$ without either antiferromagnetic or charge-density-wave orders, separating two quantum critical points at zero temperature. The elimination of the sign problem in a model without explicit particle-hole symmetry may open new perspectives for strongly correlated models, even away from the purely attractive or particle-hole symmetric cases.
We present electron and phonon spectral functions calculated from determinant quantum Monte Carlo simulations of the half-filled two-dimensional Hubbard-Holstein model on a square lattice. By tuning the relative electron-electron ($e$-$e$) and electr
Over the past several years, reliable Quantum Monte Carlo results for the charge density wave transition temperature $T_{cdw}$ of the half-filled two dimensional Holstein model in square and honeycomb lattices have become available for the first time
We study the phase diagram of the ionic Hubbard model (IHM) at half-filling using dynamical mean field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics o
Two very different methods -- exact diagonalization on finite chains and a variational method -- are used to study the possibility of a metal-insulator transition in the symmetric half-filled periodic Anderson-Hubbard model. With this aim we calculat
We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum Monte Carlo simulation is free from th