ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution Toward 6G Wireless Networks: A Resource Management Perspective

101   0   0.0 ( 0 )
 نشر من قبل Ekram Hossain
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this article, we first present the vision, key performance indicators, key enabling techniques (KETs), and services of 6G wireless networks. Then, we highlight a series of general resource management (RM) challenges as well as unique RM challenges corresponding to each KET. The unique RM challenges in 6G necessitate the transformation of existing optimization-based solutions to artificial intelligence/machine learning-empowered solutions. In the sequel, we formulate a joint network selection and subchannel allocation problem for 6G multi-band network that provides both further enhanced mobile broadband (FeMBB) and extreme ultra reliable low latency communication (eURLLC) services to the terrestrial and aerial users. Our solution highlights the efficacy of multi-band network and demonstrates the robustness of dueling deep Q-learning in obtaining efficient RM solution with faster convergence rate compared to deep-Q network and double deep Q-network algorithms.



قيم البحث

اقرأ أيضاً

LoRa wireless networks are considered as a key enabling technology for next generation internet of things (IoT) systems. New IoT deployments (e.g., smart city scenarios) can have thousands of devices per square kilometer leading to huge amount of pow er consumption to provide connectivity. In this paper, we investigate green LoRa wireless networks powered by a hybrid of the grid and renewable energy sources, which can benefit from harvested energy while dealing with the intermittent supply. This paper proposes resource management schemes of the limited number of channels and spreading factors (SFs) with the objective of improving the LoRa gateway energy efficiency. First, the problem of grid power consumption minimization while satisfying the systems quality of service demands is formulated. Specifically, both scenarios the uncorrelated and time-correlated channels are investigated. The optimal resource management problem is solved by decoupling the formulated problem into two sub-problems: channel and SF assignment problem and energy management problem. Since the optimal solution is obtained with high complexity, online resource management heuristic algorithms that minimize the grid energy consumption are proposed. Finally, taking into account the channel and energy correlation, adaptable resource management schemes based on Reinforcement Learning (RL), are developed. Simulations results show that the proposed resource management schemes offer efficient use of renewable energy in LoRa wireless networks.
292 - Yifei Shen , Jun Zhang , S.H. Song 2021
Resource management plays a pivotal role in wireless networks, which, unfortunately, leads to challenging NP-hard problems. Artificial Intelligence (AI), especially deep learning techniques, has recently emerged as a disruptive technology to solve su ch challenging problems in a real-time manner. However, although promising results have been reported, practical design guidelines and performance guarantees of AI-based approaches are still missing. In this paper, we endeavor to address two fundamental questions: 1) What are the main advantages of AI-based methods compared with classical techniques; and 2) Which neural network should we choose for a given resource management task. For the first question, four advantages are identified and discussed. For the second question, emph{optimality gap}, i.e., the gap to the optimal performance, is proposed as a measure for selecting model architectures, as well as, for enabling a theoretical comparison between different AI-based approaches. Specifically, for $K$-user interference management problem, we theoretically show that graph neural networks (GNNs) are superior to multi-layer perceptrons (MLPs), and the performance gap between these two methods grows with $sqrt{K}$.
Current network access infrastructures are characterized by heterogeneity, low latency, high throughput, and high computational capability, enabling massive concurrent connections and various services. Unfortunately, this design does not pay signific ant attention to mobile services in underserved areas. In this context, the use of aerial radio access networks (ARANs) is a promising strategy to complement existing terrestrial communication systems. Involving airborne components such as unmanned aerial vehicles, drones, and satellites, ARANs can quickly establish a flexible access infrastructure on demand. ARANs are expected to support the development of seamless mobile communication systems toward a comprehensive sixth-generation (6G) global access infrastructure. This paper provides an overview of recent studies regarding ARANs in the literature. First, we investigate related work to identify areas for further exploration in terms of recent knowledge advancements and analyses. Second, we define the scope and methodology of this study. Then, we describe ARAN architecture and its fundamental features for the development of 6G networks. In particular, we analyze the system model from several perspectives, including transmission propagation, energy consumption, communication latency, and network mobility. Furthermore, we introduce technologies that enable the success of ARAN implementations in terms of energy replenishment, operational management, and data delivery. Subsequently, we discuss application scenarios envisioned for these technologies. Finally, we highlight ongoing research efforts and trends toward 6G ARANs.
Recent years have seen rapid deployment of mobile computing and Internet of Things (IoT) networks, which can be mostly attributed to the increasing communication and sensing capabilities of wireless systems. Big data analysis, pervasive computing, an d eventually artificial intelligence (AI) are envisaged to be deployed on top of the IoT and create a new world featured by data-driven AI. In this context, a novel paradigm of merging AI and wireless communications, called Wireless AI that pushes AI frontiers to the network edge, is widely regarded as a key enabler for future intelligent network evolution. To this end, we present a comprehensive survey of the latest studies in wireless AI from the data-driven perspective. Specifically, we first propose a novel Wireless AI architecture that covers five key data-driven AI themes in wireless networks, including Sensing AI, Network Device AI, Access AI, User Device AI and Data-provenance AI. Then, for each data-driven AI theme, we present an overview on the use of AI approaches to solve the emerging data-related problems and show how AI can empower wireless network functionalities. Particularly, compared to the other related survey papers, we provide an in-depth discussion on the Wireless AI applications in various data-driven domains wherein AI proves extremely useful for wireless network design and optimization. Finally, research challenges and future visions are also discussed to spur further research in this promising area.
Unmanned aerial vehicles (UAVs) are widely deployed to enhance the wireless network capacity and to provide communication services to mobile users beyond the infrastructure coverage. Recently, with the help of a promising technology called network vi rtualization, multiple service providers (SPs) can share the infrastructures and wireless resources owned by the mobile network operators (MNOs). Then, they provide specific services to their mobile users using the resources obtained from MNOs. However, wireless resource sharing among SPs is challenging as each SP wants to maximize their utility/profit selfishly while satisfying the QoS requirement of their mobile users. Therefore, in this paper, we propose joint user association and wireless resource sharing problem in the cell-free UAVs-assisted wireless networks with the objective of maximizing the total network utility of the SPs while ensuring QoS constraints of their mobile users and the resource constraints of the UAVs deployed by MNOs. To solve the proposed mixed-integer non-convex problem, we decompose the proposed problem into two subproblems: users association, and resource sharing problems. Then, a two-sided matching algorithm is deployed in order to solve users association problem. We further deploy the whale optimization and Lagrangian relaxation algorithms to solve the resource sharing problem. Finally, extensive numerical results are provided in order to show the effectiveness of our proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا