ﻻ يوجد ملخص باللغة العربية
With the development of deep learning, the single super-resolution image reconstruction network models are becoming more and more complex. Small changes in hyperparameters of the models have a greater impact on model performance. In the existing works, experts have gradually explored a set of optimal model parameters based on empirical values or performing brute-force search. In this paper, we introduce a new super-resolution image reconstruction generative adversarial network framework, and a Bayesian optimization method used to optimizing the hyperparameters of the generator and discriminator. The generator is made by self-calibrated convolution, and discriminator is made by convolution lays. We have defined the hyperparameters such as the number of network layers and the number of neurons. Our method adopts Bayesian optimization as a optimization policy of GAN in our model. Not only can find the optimal hyperparameter solution automatically, but also can construct a super-resolution image reconstruction network, reducing the manual workload. Experiments show that Bayesian optimization can search the optimal solution earlier than the other two optimization algorithms.
Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory consumption of GAN-based SR (usually generators) causes performance degradation
Although wireless capsule endoscopy is the preferred modality for diagnosis and assessment of small bowel diseases, the poor camera resolution is a substantial limitation for both subjective and automated diagnostics. Enhanced-resolution endoscopy ha
Classic image scaling (e.g. bicubic) can be seen as one convolutional layer and a single upscaling filter. Its implementation is ubiquitous in all display devices and image processing software. In the last decade deep learning systems have been intro
Modeling layout is an important first step for graphic design. Recently, methods for generating graphic layouts have progressed, particularly with Generative Adversarial Networks (GANs). However, the problem of specifying the locations and sizes of d
The single image super-resolution task is one of the most examined inverse problems in the past decade. In the recent years, Deep Neural Networks (DNNs) have shown superior performance over alternative methods when the acquisition process uses a fixe