ﻻ يوجد ملخص باللغة العربية
The Virtual Compton scattering (VCS) process at low energies explores the electromagnetic structure of the proton in terms of generalized polarizabilities (GPs). In the one-photon exchange approximation, VCS can be accessed with exclusive photon production reactions with electron or positron beams. The extraction of the GPs from VCS with electron beam has seen substantial progress over the past two decades. Nonetheless, a consistent picture of the GPs from low to higher scales demands further investigations. Complementary measurements with positron beams offer an unique possibility, and we present an impact study of such experimental program.
Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final p
The three-dimensional structure of nucleons (protons and neutrons) is embedded in so-called generalized parton distributions, which are accessible from deeply virtual Compton scattering. In this process, a high energy electron is scattered off a nucl
The sub-leading power of the scattering amplitude for deeply-virtual Compton scattering (DVCS) off the nucleon contains leading-twist and twist-3 generalized parton distributions (GPDs). We point out that in DVCS, at twist-3 accuracy, one cannot addr
Measuring DVCS on a neutron target is a necessary step to deepen our understanding of the structure of the nucleon in terms of Generalized Parton Distributions (GPDs). The combination of neutron and proton targets allows to perform a flavor decomposi
We analyze virtual Compton scattering off the nucleon at low energies in a covariant, model-independent formalism. We define a set of invariant functions which, once the irregular nucleon pole terms have been subtracted in a gauge-invariant fashion