ترغب بنشر مسار تعليمي؟ اضغط هنا

Deeply virtual Compton scattering on the neutron with positron beam

68   0   0.0 ( 0 )
 نشر من قبل Silvia Niccolai
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring DVCS on a neutron target is a necessary step to deepen our understanding of the structure of the nucleon in terms of Generalized Parton Distributions (GPDs). The combination of neutron and proton targets allows to perform a flavor decomposition of the GPDs. Moreover, neutron-DVCS plays a complementary role to DVCS on a transversely polarized proton target in the determination of the GPD $E$, the least known and constrained GPD that enters Jis angular momentum sum rule. A measurement of the beam-charge asymmetry (BCA) in the $e^{pm} dto e^{pm}ngamma(p)$ reaction can significantly impact the experimental determination of the real parts of the $E$ and, to a lesser extent, $widetilde{H}$ GPDs.



قيم البحث

اقرأ أيضاً

The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({ vec e},egamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.
Double Deeply Virtual Compton Scattering (DDVCS) is the only experimental channel for the determination of the dependence of the Generalized Parton Distributions (GPDs) on both the average and the transferred momentum independently. The physics obser vables of the electron induced di-muon production reaction $vv{e}^{pm}p to e^{pm}pmu^+mu^-$ off unpolarized hydrogen are discussed. Their measurement with the high luminosity and large acceptance SoLID spectrometer at the Thomas Jefferson National Accelerator Facility, using polarized and unpolarized positron and electron beams at 11 GeV is investigated. This experimental configuration is shown to provide unprecedented access to the GPDs with the determination of the real and imaginary parts of the Compton Form Factor ${mathcal H}$ in an unexplored phase space, and to enable an exploratory investigation of higher twist effects.
140 - A. Afanasev , I. Albayrak , S. Ali 2021
We propose to use the High Momentum Spectrometer of Hall C combined with the Neutral Particle Spectrometer (NPS) to perform high precision measurements of the Deeply Virtual Compton Scattering (DVCS) cross section using a beam of positrons. The combi nation of measurements with oppositely charged incident beams is the only unambiguous way to disentangle the contribution of the DVCS$^2$ term in the photon electroproduction cross section from its interference with the Bethe-Heitler amplitude. This provides a stronger way to constrain the Generalized Parton Distributions of the nucleon. A wide range of kinematics accessible with an 11 GeV beam off an unpolarized proton target will be covered. The $Q^2-$dependence of each contribution will be measured independently.
The unpolarized and polarized Beam Char-ge Asymmetries (BCAs) of the $vv{e}^{pm}p to e^{pm}p gamma$ process off unpolarized hydrogen are discussed. The measurement of BCAs with the CLAS12 spectrometer at the Thomas Jefferson National Accelerator Faci lity, using polarized positron and electron beams at 10.6 GeV is investigated. This experimental configuration allows to measure azimuthal and $t$-dependences of the unpolarized and polarized BCAs over a large $(x_B,Q^2)$ phase space, providing a direct access to the real part of the Compton Form Factor (CFF) ${mathcal H}$. Additionally, these measurements confront the Bethe-Heitler dominance hypothesis and eventual effects beyond leading twist. The impact of potential positron beam data on the determination of CFFs is also investigated within a local fitting approach of experimental observables. Positron data are shown to strongly reduce correlations between CFFs and consequently improve significantly the determination of $Re {rm e} [mathcal{H}]$.
162 - Whitney Armstrong 2017
The three-dimensional picture of quarks and gluons in the proton is set to be revealed through Deeply virtual Compton scattering while a critically important puzzle in the one-dimensional picture remains, namely, the origins of the EMC effect. Incohe rent nuclear DVCS, i.e. DVCS on a nucleon inside a nucleus, can reveal the 3D partonic structure of the bound nucleon and shed a new light on the EMC effect. However, the Fermi motion of the struck nucleon, off-shell effects and final-state interactions (FSIs) complicate this parton level interpretation. We propose here a measurement of incoherent DVCS with a tagging of the recoiling spectator system (nucleus A-1) to systematically control nuclear effects. Through spectator-tagged DVCS, a fully detected final state presents a unique opportunity to systematically study these nuclear effects and cleanly observe possible modification of the nucleons quark distributions. We propose to measure the DVCS beam-spin asymmetries (BSAs) on $^4$He and deuterium targets. The reaction $^4$He$(e,e^{prime}gamma,p,^3$H$)$ with a fully detected final state has the rare ability to simultaneously quantify FSIs, measure initial nucleon momentum, and provide a sensitive probe to other nuclear effects at the parton level. The DVCS BSA on a (quasi-free) neutron will be measured by tagging a spectator proton with a deuteron target. Similarly, a bound neutron measurement detects a spectator $^3$He off a $^4$He target. These two observables will allow for a self-contained measurement of the neutron off-forward EMC Effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا