ﻻ يوجد ملخص باللغة العربية
Diffractive deeply virtual Compton scattering (DiDVCS) is the process $gamma^*(- Q^2) + N rightarrow rho^0 + gamma^* (Q^2)+ N$, where N is a nucleon or light nucleus, in the kinematical regime of large rapidity gap between the $rho^0$ and the final photon-nucleus system, and in the generalized Bjorken regime where both photon virtualities $Q^2$ and $ Q^2$ are large. We show that this process has the unique virtue of combining the large diffractive cross sections at high energy with the tomographic ability of deeply virtual Compton scattering to scrutinize the quark and gluon content of nucleons and light nuclei. Its study at an electron-ion collider would enlighten the internal structure of hadrons.
The three-dimensional structure of nucleons (protons and neutrons) is embedded in so-called generalized parton distributions, which are accessible from deeply virtual Compton scattering. In this process, a high energy electron is scattered off a nucl
The sub-leading power of the scattering amplitude for deeply-virtual Compton scattering (DVCS) off the nucleon contains leading-twist and twist-3 generalized parton distributions (GPDs). We point out that in DVCS, at twist-3 accuracy, one cannot addr
We present a dispersive representation of the D-term form factor for hard exclusive reactions, using unsubtracted $t$-channel dispersion relations. The $t$-channel unitarity relation is saturated with the contribution of two-pion intermediate states,
Generalised parton distributions are instrumental to study both the three-dimensional structure and the energy-momentum tensor of the nucleon, and motivate numerous experimental programmes involving hard exclusive measurements. Based on a next-to-lea
An overview is given about the capabilities provided by the JLab 12 GeV Upgrade to measure deeply virtual exclusive processes with high statistics and covering a large kinematics range in the parameters that are needed to allow reconstruction of a sp