ﻻ يوجد ملخص باللغة العربية
DRAM is the dominant main memory technology used in modern computing systems. Computing systems implement a memory controller that interfaces with DRAM via DRAM commands. DRAM executes the given commands using internal components (e.g., access transistors, sense amplifiers) that are orchestrated by DRAM internal timings, which are fixed foreach DRAM command. Unfortunately, the use of fixed internal timings limits the types of operations that DRAM can perform and hinders the implementation of new functionalities and custom mechanisms that improve DRAM reliability, performance and energy. To overcome these limitations, we propose enabling programmable DRAM internal timings for controlling in-DRAM components. To this end, we design CODIC, a new low-cost DRAM substrate that enables fine-grained control over four previously fixed internal DRAM timings that are key to many DRAM operations. We implement CODIC with only minimal changes to the DRAM chip and the DDRx interface. To demonstrate the potential of CODIC, we propose two new CODIC-based security mechanisms that outperform state-of-the-art mechanisms in several ways: (1) a new DRAM Physical Unclonable Function (PUF) that is more robust and has significantly higher throughput than state-of-the-art DRAM PUFs, and (2) the first cold boot attack prevention mechanism that does not introduce any performance or energy overheads at runtime.
DRAM is the prevalent main memory technology, but its long access latency can limit the performance of many workloads. Although prior works provide DRAM designs that reduce DRAM access latency, their reduced storage capacities hinder the performance
In order to shed more light on how RowHammer affects modern and future devices at the circuit-level, we first present an experimental characterization of RowHammer on 1580 DRAM chips (408x DDR3, 652x DDR4, and 520x LPDDR4) from 300 DRAM modules (60x
True random number generators (TRNG) sample random physical processes to create large amounts of random numbers for various use cases, including security-critical cryptographic primitives, scientific simulations, machine learning applications, and ev
DRAM-based memory is a critical factor that creates a bottleneck on the system performance since the processor speed largely outperforms the DRAM latency. In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables faster acces
Processing-using-DRAM has been proposed for a limited set of basic operations (i.e., logic operations, addition). However, in order to enable the full adoption of processing-using-DRAM, it is necessary to provide support for more complex operations.