ترغب بنشر مسار تعليمي؟ اضغط هنا

Reducing DRAM Access Latency by Exploiting DRAM Leakage Characteristics and Common Access Patterns

67   0   0.0 ( 0 )
 نشر من قبل Hasan Hassan
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Hasan Hassan




اسأل ChatGPT حول البحث

DRAM-based memory is a critical factor that creates a bottleneck on the system performance since the processor speed largely outperforms the DRAM latency. In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems.



قيم البحث

اقرأ أيضاً

252 - K. K. Chang , D. Lee , Z. Chishti 2018
This article summarizes the idea of refresh-access parallelism, which was published in HPCA 2014, and examines the works significance and future potential. The overarching objective of our HPCA 2014 paper is to reduce the significant negative perform ance impact of DRAM refresh with intelligent memory controller mechanisms. To mitigate the negative performance impact of DRAM refresh, our HPCA 2014 paper proposes two complementary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray Access Refresh Parallelization). The goal is to address the drawbacks of state-of-the-art per-bank refresh mechanism by building more efficient techniques to parallelize refreshes and accesses within DRAM. First, instead of issuing per-bank refreshes in a round-robin order, as it is done today, DARP issues per-bank refreshes to idle banks in an out-of-order manner. Furthermore, DARP proactively schedules refreshes during intervals when a batch of writes are draining to DRAM. Second, SARP exploits the existence of mostly-independent subarrays within a bank. With minor modifications to DRAM organization, it allows a bank to serve memory accesses to an idle subarray while another subarray is being refreshed. Our extensive evaluations on a wide variety of workloads and systems show that our mechanisms improve system performance (and energy efficiency) compared to three state-of-the-art refresh policies, and their performance bene ts increase as DRAM density increases.
This paper summarizes the idea of ChargeCache, which was published in HPCA 2016 [51], and examines the works significance and future potential. DRAM latency continues to be a critical bottleneck for system performance. In this work, we develop a low- cost mechanism, called ChargeCache, that enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems.
Increasing single-cell DRAM error rates have pushed DRAM manufacturers to adopt on-die error-correction coding (ECC), which operates entirely within a DRAM chip to improve factory yield. The on-die ECC function and its effects on DRAM reliability are considered trade secrets, so only the manufacturer knows precisely how on-die ECC alters the externally-visible reliability characteristics. Consequently, on-die ECC obstructs third-party DRAM customers (e.g., test engineers, experimental researchers), who typically design, test, and validate systems based on these characteristics. To give third parties insight into precisely how on-die ECC transforms DRAM error patterns during error correction, we introduce Bit-Exact ECC Recovery (BEER), a new methodology for determining the full DRAM on-die ECC function (i.e., its parity-check matrix) without hardware tools, prerequisite knowledge about the DRAM chip or on-die ECC mechanism, or access to ECC metadata (e.g., error syndromes, parity information). BEER exploits the key insight that non-intrusively inducing data-retention errors with carefully-crafted test patterns reveals behavior that is unique to a specific ECC function. We use BEER to identify the ECC functions of 80 real LPDDR4 DRAM chips with on-die ECC from three major DRAM manufacturers. We evaluate BEERs correctness in simulation and performance on a real system to show that BEER is effective and practical across a wide range of on-die ECC functions. To demonstrate BEERs value, we propose and discuss several ways that third parties can use BEER to improve their design and testing practices. As a concrete example, we introduce and evaluate BEEP, the first error profiling methodology that uses the known on-die ECC function to recover the number and bit-exact locations of unobservable raw bit errors responsible for observable post-correction errors.
DRAM is the prevalent main memory technology, but its long access latency can limit the performance of many workloads. Although prior works provide DRAM designs that reduce DRAM access latency, their reduced storage capacities hinder the performance of workloads that need large memory capacity. Because the capacity-latency trade-off is fixed at design time, previous works cannot achieve maximum performance under very different and dynamic workload demands. This paper proposes Capacity-Latency-Reconfigurable DRAM (CLR-DRAM), a new DRAM architecture that enables dynamic capacity-latency trade-off at low cost. CLR-DRAM allows dynamic reconfiguration of any DRAM row to switch between two operating modes: 1) max-capacity mode, where every DRAM cell operates individually to achieve approximately the same storage density as a density-optimized commodity DRAM chip and 2) high-performance mode, where two adjacent DRAM cells in a DRAM row and their sense amplifiers are coupled to operate as a single low-latency logical cell driven by a single logical sense amplifier. We implement CLR-DRAM by adding isolation transistors in each DRAM subarray. Our evaluations show that CLR-DRAM can improve system performance and DRAM energy consumption by 18.6% and 29.7% on average with four-core multiprogrammed workloads. We believe that CLR-DRAM opens new research directions for a system to adapt to the diverse and dynamically changing memory capacity and access latency demands of workloads.
81 - Kevin K. Chang 2017
Over the past two decades, the storage capacity and access bandwidth of main memory have improved tremendously, by 128x and 20x, respectively. These improvements are mainly due to the continuous technology scaling of DRAM (dynamic random-access memor y), which has been used as the physical substrate for main memory. In stark contrast with capacity and bandwidth, DRAM latency has remained almost constant, reducing by only 1.3x in the same time frame. Therefore, long DRAM latency continues to be a critical performance bottleneck in modern systems. Increasing core counts, and the emergence of increasingly more data-intensive and latency-critical applications further stress the importance of providing low-latency memory access. In this dissertation, we identify three main problems that contribute significantly to long latency of DRAM accesses. To address these problems, we present a series of new techniques. Our new techniques significantly improve both system performance and energy efficiency. We also examine the critical relationship between supply voltage and latency in modern DRAM chips and develop new mechanisms that exploit this voltage-latency trade-off to improve energy efficiency. The key conclusion of this dissertation is that augmenting DRAM architecture with simple and low-cost features, and developing a better understanding of manufactured DRAM chips together lead to significant memory latency reduction as well as energy efficiency improvement. We hope and believe that the proposed architectural techniques and the detailed experimental data and observations on real commodity DRAM chips presented in this dissertation will enable development of other new mechanisms to improve the performance, energy efficiency, or reliability of future memory systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا