ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

88   0   0.0 ( 0 )
 نشر من قبل Jeremie Kim
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to shed more light on how RowHammer affects modern and future devices at the circuit-level, we first present an experimental characterization of RowHammer on 1580 DRAM chips (408x DDR3, 652x DDR4, and 520x LPDDR4) from 300 DRAM modules (60x DDR3, 110x DDR4, and 130x LPDDR4) with RowHammer protection mechanisms disabled, spanning multiple different technology nodes from across each of the three major DRAM manufacturers. Our studies definitively show that newer DRAM chips are more vulnerable to RowHammer: as device feature size reduces, the number of activations needed to induce a RowHammer bit flip also reduces, to as few as 9.6k (4.8k to two rows each) in the most vulnerable chip we tested. We evaluate five state-of-the-art RowHammer mitigation mechanisms using cycle-accurate simulation in the context of real data taken from our chips to study how the mitigation mechanisms scale with chip vulnerability. We find that existing mechanisms either are not scalable or suffer from prohibitively large performance overheads in projected future devices given our observed trends of RowHammer vulnerability. Thus, it is critical to research more effective solutions to RowHammer.



قيم البحث

اقرأ أيضاً

It has become increasingly difficult to understand the complex interaction between modern applications and main memory, composed of DRAM chips. Manufacturers are now selling and proposing many different types of DRAM, with each DRAM type catering to different needs (e.g., high throughput, low power, high memory density). At the same time, the memory access patterns of prevalent and emerging workloads are rapidly diverging, as these applications manipulate larger data sets in very different ways. As a result, the combined DRAM-workload behavior is often difficult to intuitively determine today, which can hinder memory optimizations in both hardware and software. In this work, we identify important families of workloads, as well as prevalent types of DRAM chips, and rigorously analyze the combined DRAM--workload behavior. To this end, we perform a comprehensive experimental study of the interaction between nine different DRAM types and 115 modern applications and multiprogrammed workloads. We draw 12 key observations from our characterization, enabled in part by our development of new metrics that take into account contention between memory requests due to hardware design. Notably, we find that (1) newer DRAM types such as DDR4 and HMC often do not outperform older types such as DDR3, due to higher access latencies and, in the case of HMC, poor exploitation of locality; (2) there is no single DRAM type that can cater to all components of a heterogeneous system (e.g., GDDR5 significantly outperforms other memories for multimedia acceleration, while HMC significantly outperforms other memories for network acceleration); and (3) there is still a strong need to lower DRAM latency, but unfortunately the current design trend of commodity DRAM is toward higher latencies to obtain other benefits. We hope that the trends we identify can drive optimizations in both hardware and software design.
DRAM is the dominant main memory technology used in modern computing systems. Computing systems implement a memory controller that interfaces with DRAM via DRAM commands. DRAM executes the given commands using internal components (e.g., access transi stors, sense amplifiers) that are orchestrated by DRAM internal timings, which are fixed foreach DRAM command. Unfortunately, the use of fixed internal timings limits the types of operations that DRAM can perform and hinders the implementation of new functionalities and custom mechanisms that improve DRAM reliability, performance and energy. To overcome these limitations, we propose enabling programmable DRAM internal timings for controlling in-DRAM components. To this end, we design CODIC, a new low-cost DRAM substrate that enables fine-grained control over four previously fixed internal DRAM timings that are key to many DRAM operations. We implement CODIC with only minimal changes to the DRAM chip and the DDRx interface. To demonstrate the potential of CODIC, we propose two new CODIC-based security mechanisms that outperform state-of-the-art mechanisms in several ways: (1) a new DRAM Physical Unclonable Function (PUF) that is more robust and has significantly higher throughput than state-of-the-art DRAM PUFs, and (2) the first cold boot attack prevention mechanism that does not introduce any performance or energy overheads at runtime.
This paper summarizes our work on experimental characterization and analysis of reduced-voltage operation in modern DRAM chips, which was published in SIGMETRICS 2017, and examines the works significance and future potential. We take a comprehensiv e approach to understanding and exploiting the latency and reliability characteristics of modern DRAM when the DRAM supply voltage is lowered below the nominal voltage level specified by DRAM standards. We perform an experimental study of 124 real DDR3L (low-voltage) DRAM chips manufactured recently by three major DRAM vendors. We find that reducing the supply voltage below a certain point introduces bit errors in the data, and we comprehensively characterize the behavior of these errors. We discover that these errors can be avoided by increasing the latency of three major DRAM operations (activation, restoration, and precharge). We perform detailed DRAM circuit simulations to validate and explain our experimental findings. We also characterize the various relationships between reduced supply voltage and error locations, stored data patterns, DRAM temperature, and data retention. Based on our observations, we propose a new DRAM energy reduction mechanism, called Voltron. The key idea of Voltron is to use a performance model to determine by how much we can reduce the supply voltage without introducing errors and without exceeding a user-specified threshold for performance loss. Our evaluations show that Voltron reduces the average DRAM and system energy consumption by 10.5% and 7.3%, respectively, while limiting the average system performance loss to only 1.8%, for a variety of memory-intensive quad-core workloads. We also show that Voltron significantly outperforms prior dynamic voltage and frequency scaling mechanisms for DRAM.
True random number generators (TRNG) sample random physical processes to create large amounts of random numbers for various use cases, including security-critical cryptographic primitives, scientific simulations, machine learning applications, and ev en recreational entertainment. Unfortunately, not every computing system is equipped with dedicated TRNG hardware, limiting the application space and security guarantees for such systems. To open the application space and enable security guarantees for the overwhelming majority of computing systems that do not necessarily have dedicated TRNG hardware, we develop QUAC-TRNG. QUAC-TRNG exploits the new observation that a carefully-engineered sequence of DRAM commands activates four consecutive DRAM rows in rapid succession. This QUadruple ACtivation (QUAC) causes the bitline sense amplifiers to non-deterministically converge to random values when we activate four rows that store conflicting data because the net deviation in bitline voltage fails to meet reliable sensing margins. We experimentally demonstrate that QUAC reliably generates random values across 136 commodity DDR4 DRAM chips from one major DRAM manufacturer. We describe how to develop an effective TRNG (QUAC-TRNG) based on QUAC. We evaluate the quality of our TRNG using NIST STS and find that QUAC-TRNG successfully passes each test. Our experimental evaluations show that QUAC-TRNG generates true random numbers with a throughput of 3.44 Gb/s (per DRAM channel), outperforming the state-of-the-art DRAM-based TRNG by 15.08x and 1.41x for basic and throughput-optimiz
66 - Hasan Hassan 2016
DRAM-based memory is a critical factor that creates a bottleneck on the system performance since the processor speed largely outperforms the DRAM latency. In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables faster acces s to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا