ترغب بنشر مسار تعليمي؟ اضغط هنا

Score Matching Model for Unbounded Data Score

94   0   0.0 ( 0 )
 نشر من قبل Dongjun Kim
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent advance in diffusion models incorporates the Stochastic Differential Equation (SDE), which brings the state-of-the art performance on image generation tasks. This paper improves such diffusion models by analyzing the model at the zero diffusion time. In real datasets, the score function diverges as the diffusion time ($t$) decreases to zero, and this observation leads an argument that the score estimation fails at $t=0$ with any neural network structure. Subsequently, we introduce Unbounded Diffusion Model (UDM) that resolves the score diverging problem with an easily applicable modification to any diffusion models. Additionally, we introduce a new SDE that overcomes the theoretic and practical limitations of Variance Exploding SDE. On top of that, the introduced Soft Truncation method improves the sample quality by mitigating the loss scale issue that happens at $t=0$. We further provide a theoretic result of the proposed method to uncover the behind mechanism of the diffusion models.



قيم البحث

اقرأ أيضاً

Autoregressive models use chain rule to define a joint probability distribution as a product of conditionals. These conditionals need to be normalized, imposing constraints on the functional families that can be used. To increase flexibility, we prop ose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariate log-conditionals (scores), which need not be normalized. To train AR-CSM, we introduce a new divergence between distributions named Composite Score Matching (CSM). For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training. Compared to previous score matching algorithms, our method is more scalable to high dimensional data and more stable to optimize. We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
Score-based generative models provide state-of-the-art quality for image and audio synthesis. Sampling from these models is performed iteratively, typically employing a discretized series of noise levels and a predefined scheme. In this note, we firs t overview three common sampling schemes for models trained with denoising score matching. Next, we focus on one of them, consistent annealed sampling, and study its hyper-parameter boundaries. We then highlight a possible formulation of such hyper-parameter that explicitly considers those boundaries and facilitates tuning when using few or a variable number of steps. Finally, we highlight some connections of the formulation with other sampling schemes.
Applications such as the analysis of microbiome data have led to renewed interest in statistical methods for compositional data, i.e., multivariate data in the form of probability vectors that contain relative proportions. In particular, there is con siderable interest in modeling interactions among such relative proportions. To this end we propose a class of exponential family models that accommodate general patterns of pairwise interaction while being supported on the probability simplex. Special cases include the family of Dirichlet distributions as well as Aitchisons additive logistic normal distributions. Generally, the distributions we consider have a density that features a difficult to compute normalizing constant. To circumvent this issue, we design effective estimation methods based on generaliz
Score matching is a popular method for estimating unnormalized statistical models. However, it has been so far limited to simple, shallow models or low-dimensional data, due to the difficulty of computing the Hessian of log-density functions. We show this difficulty can be mitigated by projecting the scores onto random vectors before comparing them. This objective, called sliced score matching, only involves Hessian-vector products, which can be easily implemented using reverse-mode automatic differentiation. Therefore, sliced score matching is amenable to more complex models and higher dimensional data compared to score matching. Theoretically, we prove the consistency and asymptotic normality of sliced score matching estimators. Moreover, we demonstrate that sliced score matching can be used to learn deep score estimators for implicit distributions. In our experiments, we show sliced score matching can learn deep energy-based models effectively, and can produce accurate score estimates for applications such as variational inference with implicit distributions and training Wasserstein Auto-Encoders.
A common challenge in estimating parameters of probability density functions is the intractability of the normalizing constant. While in such cases maximum likelihood estimation may be implemented using numerical integration, the approach becomes com putationally intensive. The score matching method of Hyvarinen [2005] avoids direct calculation of the normalizing constant and yields closed-form estimates for exponential families of continuous distributions over $mathbb{R}^m$. Hyvarinen [2007] extended the approach to distributions supported on the non-negative orthant, $mathbb{R}_+^m$. In this paper, we give a generalized form of score matching for non-negative data that improves estimation efficiency. As an example, we consider a general class of pairwise interaction models. Addressing an overlooked inexistence problem, we generalize the regularized score matching method of Lin et al. [2016] and improve its theoretical guarantees for non-negative Gaussian graphical models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا