ﻻ يوجد ملخص باللغة العربية
High-quality data is critical to train performant Machine Learning (ML) models, highlighting the importance of Data Quality Management (DQM). Existing DQM schemes often cannot satisfactorily improve ML performance because, by design, they are oblivious to downstream ML tasks. Besides, they cannot handle various data quality issues (especially those caused by adversarial attacks) and have limited applications to only certain types of ML models. Recently, data valuation approaches (e.g., based on the Shapley value) have been leveraged to perform DQM; yet, empirical studies have observed that their performance varies considerably based on the underlying data and training process. In this paper, we propose a task-driven, multi-purpose, model-agnostic DQM framework, DataSifter, which is optimized towards a given downstream ML task, capable of effectively removing data points with various defects, and applicable to diverse models. Specifically, we formulate DQM as an optimization problem and devise a scalable algorithm to solve it. Furthermore, we propose a theoretical framework for comparing the worst-case performance of different DQM strategies. Remarkably, our results show that the popular strategy based on the Shapley value may end up choosing the worst data subset in certain practical scenarios. Our evaluation shows that DataSifter achieves and most often significantly improves the state-of-the-art performance over a wide range of DQM tasks, including backdoor, poison, noisy/mislabel data detection, data summarization, and data debiasing.
Federated multi-task learning (FMTL) has emerged as a natural choice to capture the statistical diversity among the clients in federated learning. To unleash the potential of FMTL beyond statistical diversity, we formulate a new FMTL problem FedU usi
Despite the large number of patients in Electronic Health Records (EHRs), the subset of usable data for modeling outcomes of specific phenotypes are often imbalanced and of modest size. This can be attributed to the uneven coverage of medical concept
Developing machine learning models can be seen as a process similar to the one established for traditional software development. A key difference between the two lies in the strong dependency between the quality of a machine learning model and the qu
The existence of noisy data is prevalent in both the training and testing phases of machine learning systems, which inevitably leads to the degradation of model performance. There have been plenty of works concentrated on learning with in-distributio
We study bandits and reinforcement learning (RL) subject to a conservative constraint where the agent is asked to perform at least as well as a given baseline policy. This setting is particular relevant in real-world domains including digital marketi