ﻻ يوجد ملخص باللغة العربية
We present a numerical scheme for the solution of nonlinear mixed-dimensional PDEs describing coupled processes in embedded tubular network system in exchange with a bulk domain. Such problems arise in various biological and technical applications such as in the modeling of root-water uptake, heat exchangers, or geothermal wells. The nonlinearity appears in form of solution-dependent parameters such as pressure-dependent permeability or temperature-dependent thermal conductivity. We derive and analyse a numerical scheme based on distributing the bulk-network coupling source term by a smoothing kernel with local support. By the use of local analytical solutions, interface unknowns and fluxes at the bulk-network interface can be accurately reconstructed from coarsely resolved numerical solutions in the bulk domain. Numerical examples give confidence in the robustness of the method and show the results in comparison to previously published methods. The new method outperforms these existing methods in accuracy and efficiency. In a root water uptake scenario, we accurately estimate the transpiration rate using only a few thousand 3D mesh cells and a structured cube grid whereas other state-of-the-art numerical schemes require millions of cells and local grid refinement to reach comparable accuracy.
Embedding representations power machine intelligence in many applications, including recommendation systems, but they are space intensive -- potentially occupying hundreds of gigabytes in large-scale settings. To help manage this outsized memory cons
Predictive high-fidelity finite element simulations of human cardiac mechanics co-mmon-ly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computa
Modelling of mechanical behaviour of pre-stressed fibre-reinforced composites is considered in a geometrically exact setting. A general approach which includes two different reference configurations is employed: one configuration corresponds to the l
Modeling flow through porous media with multiple pore-networks has now become an active area of research due to recent technological endeavors like geological carbon sequestration and recovery of hydrocarbons from tight rock formations. Herein, we co
We present AMPS, an augmented matrix approach to update the solution to a linear system of equations when the matrix is modified by a few elements within a principal submatrix. This problem arises in the dynamic security analysis of a power grid, whe