ﻻ يوجد ملخص باللغة العربية
Predictive high-fidelity finite element simulations of human cardiac mechanics co-mmon-ly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computational demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose a novel approach to reduce only the structural dimension of the monolithically coupled structure-windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. To incorporate changes in the parameter set into our reduced order model, we provide a comparison of subspace interpolation methods. We further show how projection-based model order reduction can be easily integrated into a gradient-based optimization and demonstrate its performance in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting.
The human heart is enclosed in the pericardial cavity. The pericardium consists of a layered thin sac and is separated from the myocardium by a thin film of fluid. It provides a fixture in space and frictionless sliding of the myocardium. The influen
We introduce a new dominance concept consisting of three new dominance metrics based on Lloyds (1967) mean crowding index. The new metrics link communities and species, whereas existing ones are applicable only to communities. Our community-level met
We present a novel approach aimed at high-performance uncertainty quantification for time-dependent problems governed by partial differential equations. In particular, we consider input uncertainties described by a Karhunen-Loeeve expansion and compu
We propose an extended primal-dual algorithm framework for solving a general nonconvex optimization model. This work is motivated by image reconstruction problems in a class of nonlinear imaging, where the forward operator can be formulated as a nonl
We investigate the capability of neural network-based model order reduction, i.e., autoencoder (AE), for fluid flows. As an example model, an AE which comprises of a convolutional neural network and multi-layer perceptrons is considered in this study