ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometrically nonlinear modelling of pre-stressed viscoelastic fibre-reinforced composites with application to arteries

77   0   0.0 ( 0 )
 نشر من قبل Alexey Shutov
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modelling of mechanical behaviour of pre-stressed fibre-reinforced composites is considered in a geometrically exact setting. A general approach which includes two different reference configurations is employed: one configuration corresponds to the load-free state of the structure and another one to the stress-free state of each material particle. The applicability of the approach is demonstrated in terms of a viscoelastic material model; both the matrix and the fibre are modelled using a multiplicative split of the deformation gradient tensor; a transformation rule for initial conditions is elaborated and specified. Apart from its simplicity, an important advantage of the approach is that well-established numerical algorithms can be used for pre-stressed inelastic structures. The interrelation between the advocated approach and the widely used opening angle approach is clarified. A full-scale FEM simulation confirms the main predictions of the opening angle approach. A locking effect is discovered; the effect is that in some cases the opening angle of the composite is essentially smaller than the opening angles of its individual layers. Thus, the standard cutting test typically used to analyse pre-stresses does not carry enough information and more refined experimental techniques are needed.



قيم البحث

اقرأ أيضاً

Sparse tiling is a technique to fuse loops that access common data, thus increasing data locality. Unlike traditional loop fusion or blocking, the loops may have different iteration spaces and access shared datasets through indirect memory accesses, such as A[map[i]] -- hence the name sparse. One notable example of such loops arises in discontinuous-Galerkin finite element methods, because of the computation of numerical integrals over different domains (e.g., cells, facets). The major challenge with sparse tiling is implementation -- not only is it cumbersome to understand and synthesize, but it is also onerous to maintain and generalize, as it requires a complete rewrite of the bulk of the numerical computation. In this article, we propose an approach to extend the applicability of sparse tiling based on raising the level of abstraction. Through a sequence of compiler passes, the mathematical specification of a problem is progressively lowered, and eventually sparse-tiled C for-loops are generated. Besides automation, we advance the state-of-the-art by introducing: a revisited, more efficient sparse tiling algorithm; support for distributed-memory parallelism; a range of fine-grained optimizations for increased run-time performance; implementation in a publicly-available library, SLOPE; and an in-depth study of the performance impact in Seigen, a real-world elastic wave equation solver for seismological problems, which shows speed-ups up to 1.28x on a platform consisting of 896 Intel Broadwell cores.
We present a numerical scheme for the solution of nonlinear mixed-dimensional PDEs describing coupled processes in embedded tubular network system in exchange with a bulk domain. Such problems arise in various biological and technical applications su ch as in the modeling of root-water uptake, heat exchangers, or geothermal wells. The nonlinearity appears in form of solution-dependent parameters such as pressure-dependent permeability or temperature-dependent thermal conductivity. We derive and analyse a numerical scheme based on distributing the bulk-network coupling source term by a smoothing kernel with local support. By the use of local analytical solutions, interface unknowns and fluxes at the bulk-network interface can be accurately reconstructed from coarsely resolved numerical solutions in the bulk domain. Numerical examples give confidence in the robustness of the method and show the results in comparison to previously published methods. The new method outperforms these existing methods in accuracy and efficiency. In a root water uptake scenario, we accurately estimate the transpiration rate using only a few thousand 3D mesh cells and a structured cube grid whereas other state-of-the-art numerical schemes require millions of cells and local grid refinement to reach comparable accuracy.
Additive manufacturing (AM) techniques have gained interest in the tissue engineering field thanks to their versatility and unique possibilities of producing constructs with complex macroscopic geometries and defined patterns. Recently, composite mat erials - namely heterogeneous biomaterials identified as continuous phase (matrix) and reinforcement (filler) - have been proposed as inks that can be processed by AM to obtain scaffolds with improved biomimetic and bioactive properties. Significant efforts have been dedicated to hydroxyapatite (HA)-reinforced composites, especially targeting bone tissue engineering, thanks to the chemical similarities of HA with respect to mineral components of native mineralized tissues. Here we review applications of AM techniques to process HA-reinforced composites and biocomposites for the production of scaffolds with biological matrices, including cellular tissues. The primary outcomes of recent investigations in terms of morphological, structural, and in vitro and in vivo biological properties of the materials are discussed. We classify the approaches based on the nature of the matrices employed to embed the HA reinforcements and produce the tissue substitutes and report a critical discussion on the presented state of the art as well as the future perspectives, to offer a comprehensive picture of the strategies investigated as well as challenges in this emerging field.
Predictive high-fidelity finite element simulations of human cardiac mechanics co-mmon-ly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computa tional demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose a novel approach to reduce only the structural dimension of the monolithically coupled structure-windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. To incorporate changes in the parameter set into our reduced order model, we provide a comparison of subspace interpolation methods. We further show how projection-based model order reduction can be easily integrated into a gradient-based optimization and demonstrate its performance in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting.
The study is devoted to the geometrically nonlinear simulation of fiber-reinforced composite structures. The applicability of the multiplicative approach to the simulation of viscoelastic properties of a composite material is assessed, certain improv ements are suggested. For a greater accuracy in applications involving local compressive fiber buckling, a new family of hyperelastic potentials is introduced. This family allows us to account for the variable critical compressive stress, which depends on the fiber-matrix interaction. For the simulation of viscoelasticity, the well-established Sidoroff decomposition of the deformation gradient is implemented. To account for the viscosity of the matrix material, the model of Simo and Miehe (1992) is used; highly efficient iteration-free algorithms are implemented. The viscosity of the fiber is likewise described by the multiplicative decomposition of the deformation gradient, leading to a scalar differential equation; an efficient iteration-free algorithm is proposed for the implicit time stepping. The accuracy and convergence of the new iteration-free method is tested and compared to that of the standard scheme implementing the Newton iteration. To demonstrate the applicability of the approach, a pressurized multi-layer composite pipe is modelled; the so-called stretch inversion phenomenon is reproduced and explained. The stress distribution is obtained by a semi-analytical procedure; it may serve as a benchmark for FEM computations. Finally, the issue of the parameter identification is addressed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا