ﻻ يوجد ملخص باللغة العربية
Participatory budgeting is a democratic process for allocating funds to projects based on the votes of members of the community. However, most input methods of voters preferences prevent the voters from expressing complex relationships among projects, leading to outcomes that do not reflect their preferences well enough. In this paper, we propose an input method that begins to address this challenge, by allowing participants to express substitutes over projects. Then, we extend a known aggregation mechanism from the literature (Rule X) to handle substitute projects. We prove that our extended rule preserves proportionality under natural conditions, and show empirically that it obtains substantially more welfare than the original mechanism on instances with substitutes.
We address the question of aggregating the preferences of voters in the context of participatory budgeting. We scrutinize the voting method currently used in practice, underline its drawbacks, and introduce a novel scheme tailored to this setting, wh
In participatory budgeting, communities collectively decide on the allocation of public tax dollars for local public projects. In this work, we consider the question of fairly aggregating the preferences of community members to determine an allocatio
Participatory budgeting (PB) is a democratic process where citizens jointly decide on how to allocate public funds to indivisible projects. This paper focuses on PB processes where citizens may give additional money to projects they want to see funde
In the Approval Participatory Budgeting problem an agent prefers a set of projects $W$ over $W$ if she approves strictly more projects in $W$. A set of projects $W$ is in the core, if there is no other set of projects $W$ and set of agents $K$ that b
Substitute valuations (in some contexts called gross substitute valuations) are prominent in combinatorial auction theory. An algorithm is given in this paper for generating a substitute valuation through Monte Carlo simulation. In addition, the geom