ترغب بنشر مسار تعليمي؟ اضغط هنا

Substitute Valuations: Generation and Structure

141   0   0.0 ( 0 )
 نشر من قبل Bruce Hajek
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Bruce Hajek




اسأل ChatGPT حول البحث

Substitute valuations (in some contexts called gross substitute valuations) are prominent in combinatorial auction theory. An algorithm is given in this paper for generating a substitute valuation through Monte Carlo simulation. In addition, the geometry of the set of all substitute valuations for a fixed number of goods K is investigated. The set consists of a union of polyhedrons, and the maximal polyhedrons are identified for K=4. It is shown that the maximum dimension of the maximal polyhedrons increases with K nearly as fast as two to the power K. Consequently, under broad conditions, if a combinatorial algorithm can present an arbitrary substitute valuation given a list of input numbers, the list must grow nearly as fast as two to the power K.



قيم البحث

اقرأ أيضاً

Participatory budgeting is a democratic process for allocating funds to projects based on the votes of members of the community. However, most input methods of voters preferences prevent the voters from expressing complex relationships among projects , leading to outcomes that do not reflect their preferences well enough. In this paper, we propose an input method that begins to address this challenge, by allowing participants to express substitutes over projects. Then, we extend a known aggregation mechanism from the literature (Rule X) to handle substitute projects. We prove that our extended rule preserves proportionality under natural conditions, and show empirically that it obtains substantially more welfare than the original mechanism on instances with substitutes.
We consider the problem of allocating a set on indivisible items to players with private preferences in an efficient and fair way. We focus on valuations that have dichotomous marginals, in which the added value of any item to a set is either 0 or 1, and aim to design truthful allocation mechanisms (without money) that maximize welfare and are fair. For the case that players have submodular valuations with dichotomous marginals, we design such a deterministic truthful allocation mechanism. The allocation output by our mechanism is Lorenz dominating, and consequently satisfies many desired fairness properties, such as being envy-free up to any item (EFX), and maximizing the Nash Social Welfare (NSW). We then show that our mechanism with random priorities is envy-free ex-ante, while having all the above properties ex-post. Furthermore, we present several impossibility results precluding similar results for the larger class of XOS valuations. To gauge the robustness of our positive results, we also study $epsilon$-dichotomous valuations, in which the added value of any item to a set is either non-positive, or in the range $[1, 1 + epsilon]$. We show several impossibility results in this setting, and also a positive result: for players that have additive $epsilon$-dichotomous valuations with sufficiently small $epsilon$, we design a randomized truthful mechanism with strong ex-post guarantees. For $rho = frac{1}{1 + epsilon}$, the allocations that it produces generate at least a $rho$-fraction of the maximum welfare, and enjoy $rho$-approximations for various fairness properties, such as being envy-free up to one item (EF1), and giving each player at least her maximin share.
Algorithmic pricing is the computational problem that sellers (e.g., in supermarkets) face when trying to set prices for their items to maximize their profit in the presence of a known demand. Guruswami et al. (2005) propose this problem and give log arithmic approximations (in the number of consumers) when each consumers values for bundles are known precisely. Subsequently severa
We consider the problem of approximating maximum Nash social welfare (NSW) while allocating a set of indivisible items to $n$ agents. The NSW is a popular objective that provides a balanced tradeoff between the often conflicting requirements of fairn ess and efficiency, defined as the weighted geometric mean of agents valuations. For the symmetric additive case of the problem, where agents have the same weight with additive valuations, the first constant-factor approximation algorithm was obtained in 2015. This led to a flurry of work obtaining constant-factor approximation algorithms for the symmetric case under mild generalizations of additive, and $O(n)$-approximation algorithms for more general valuations and for the asymmetric case. In this paper, we make significant progress towards both symmetric and asymmetric NSW problems. We present the first constant-factor approximation algorithm for the symmetric case under Rado valuations. Rado valuations form a general class of valuation functions that arise from maximum cost independent matching problems, including as special cases assignment (OXS) valuations and weighted matroid rank functions. Furthermore, our approach also gives the first constant-factor approximation algorithm for the asymmetric case under Rado valuations, provided that the maximum ratio between the weights is bounded by a constant.
We study the problem of designing posted-price mechanisms in order to sell a single unit of a single item within a finite period of time. Motivated by real-world problems, such as, e.g., long-term rental of rooms and apartments, we assume that custom ers arrive online according to a Poisson process, and their valuations are drawn from an unknown distribution and discounted over time. We evaluate our mechanisms in terms of competitive ratio, measuring the worst-case ratio between their revenue and that of an optimal mechanism that knows the distribution of valuations. First, we focus on the identical valuation setting, where all the customers value the item for the same amount. In this setting, we provide a mechanism M_c that achieves the best possible competitive ratio, discussing its dependency on the parameters in the case of linear discount. Then, we switch to the random valuation setting. We show that, if we restrict the attention to distributions of valuations with a monotone hazard rate, then the competitive ratio of M_c is lower bounded by a strictly positive constant that does not depend on the distribution. Moreover, we provide another mechanism, called M_pc, which is defined by a piecewise constant pricing strategy and reaches performances comparable to those obtained with M_c. This mechanism is useful when the seller cannot change the posted price too often. Finally, we empirically evaluate the performances of our mechanisms in a number of experimental settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا