ترغب بنشر مسار تعليمي؟ اضغط هنا

Participatory Budgeting with Donations and Diversity Constraints

130   0   0.0 ( 0 )
 نشر من قبل Jiehua Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Participatory budgeting (PB) is a democratic process where citizens jointly decide on how to allocate public funds to indivisible projects. This paper focuses on PB processes where citizens may give additional money to projects they want to see funded. We introduce a formal framework for this kind of PB with donations. Our framework also allows for diversity constraints, meaning that each project belongs to one or more types, and there are lower and upper bounds on the number of projects of the same type that can be funded. We propose three general classes of methods for aggregating the citizens preferences in the presence of donations and analyze their axiomatic properties. Furthermore, we investigate the computational complexity of determining the outcome of a PB process with donations and of finding a citizens optimal donation strategy.



قيم البحث

اقرأ أيضاً

Participatory budgeting is a democratic process for allocating funds to projects based on the votes of members of the community. However, most input methods of voters preferences prevent the voters from expressing complex relationships among projects , leading to outcomes that do not reflect their preferences well enough. In this paper, we propose an input method that begins to address this challenge, by allowing participants to express substitutes over projects. Then, we extend a known aggregation mechanism from the literature (Rule X) to handle substitute projects. We prove that our extended rule preserves proportionality under natural conditions, and show empirically that it obtains substantially more welfare than the original mechanism on instances with substitutes.
249 - Reshef Meir 2021
In the Approval Participatory Budgeting problem an agent prefers a set of projects $W$ over $W$ if she approves strictly more projects in $W$. A set of projects $W$ is in the core, if there is no other set of projects $W$ and set of agents $K$ that b oth prefer $W$ over $W$ and can fund $W$. It is an open problem whether the core can be empty, even when project costs are uniform. the latter case is known as the multiwinner voting core. We show that in any instance with uniform costs or with at most four projects (and any number of agents), the core is nonempty.
We address the question of aggregating the preferences of voters in the context of participatory budgeting. We scrutinize the voting method currently used in practice, underline its drawbacks, and introduce a novel scheme tailored to this setting, wh ich we call Knapsack Voting. We study its strategic properties - we show that it is strategy-proof under a natural model of utility (a dis-utility given by the $ell_1$ distance between the outcome and the true preference of the voter), and partially strategy-proof under general additive utilities. We extend Knapsack Voting to more general settings with revenues, deficits or surpluses, and prove a similar strategy-proofness result. To further demonstrate the applicability of our scheme, we discuss its implementation on the digital voting platform that we have deployed in partnership with the local government bodies in many cities across the nation. From voting data thus collected, we present empirical evidence that Knapsack Voting works well in practice.
In participatory budgeting, communities collectively decide on the allocation of public tax dollars for local public projects. In this work, we consider the question of fairly aggregating the preferences of community members to determine an allocatio n of funds to projects. This problem is different from standard fair resource allocation because of public goods: The allocated goods benefit all users simultaneously. Fairness is crucial in participatory decision making, since generating equitable outcomes is an important goal of these processes. We argue that the classic game theoretic notion of core captures fairness in the setting. To compute the core, we first develop a novel characterization of a public goods market equilibrium called the Lindahl equilibrium, which is always a core solution. We then provide the first (to our knowledge) polynomial time algorithm for computing such an equilibrium for a broad set of utility functions; our algorithm also generalizes (in a non-trivial way) the well-known concept of proportional fairness. We use our theoretical insights to perform experiments on real participatory budgeting voting data. We empirically show that the core can be efficiently computed for utility functions that naturally model our practical setting, and examine the relation of the core with the familiar welfare objective. Finally, we address concerns of incentives and mechanism design by developing a randomized approximately dominant-strategy truthful mechanism building on the exponential mechanism from differential privacy.
We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way stree t: Everyone knows complexity classification is used in comsoc, but we also highlight benefits to complexity that have arisen from its use in comsoc. Secondly, more subtle, less-known complexity tools often can be very productively used in comsoc.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا