ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial Non-Locality Induced Non-Markovian EIT in a Single Giant Atom

246   0   0.0 ( 0 )
 نشر من قبل Shibei Xue
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Giant atoms have exhibited counterintuitive but interesting phenomena such as non-exponential decays which would benefit quantum information processing. However, recent experiments on electromagnetically induced transparency (EIT) of giant atoms observed standard spectra only. In this letter, we present a full quantum model for observing EIT in a single giant atom rather than a semi-classical one in recent works. With this model and a quantum transport theory in real space, a class of non-Markovian EIT can be observed which has not been witnessed before. This new phenomenon results from spatial non-locality of a multiple distant coupling structure in the giant atom, which physically forces propagating fields between the coupling points behaving as standing waves. We also show that the spatial non-locality induced non-Markovianity can be represented by a time-delayed master equation where widely-used Born approximation in the existing works breaks down.

قيم البحث

اقرأ أيضاً

70 - M. Carrera , T. Gorin , C. Pineda 2019
We study the open dynamics of a quantum two-level system coupled to an environment modeled by random matrices. Using the quantum channel formalism, we investigate different quantum Markovianity measures and criteria. A thorough analysis of the whole parameter space, reveals a wide range of different regimes, ranging from strongly non-Markovian to Markovian dynamics. In contrast to analytical models, all non-Markovianity measures and criteria have to be applied to data with fluctuations and statistical uncertainties. We discuss the practical usefulness of the different approaches.
Two parts of an entangled quantum state can have a correlation in their joint behavior under measurements that is unexplainable by shared classical information. Such correlations are called non-local and have proven to be an interesting resource for information processing. Since non-local correlations are more useful if they are stronger, it is natural to ask whether weak non-locality can be amplified. We give an affirmative answer by presenting the first protocol for distilling non-locality in the framework of generalized non-signaling theories. Our protocol works for both quantum and non-quantum correlations. This shows that in many contexts, the extent to which a single instance of a correlation can violate a CHSH inequality is not a good measure for the usefulness of non-locality. A more meaningful measure follows from our results.
102 - I. Thanopulos , V. Yannopapas , 2017
We investigate theoretically the non-Markovian dynamics of a degenerate V-type quantum emitter in the vicinity of a metallic nanosphere, a system that exhibits quantum interference in spontaneous emission due to the anisotropic Purcell effect. We cal culate numerically the electromagnetic Greens tensor and employ the effective modes differential equation method for calculating the quantum dynamics of the emitter population, with respect to the resonance frequency and the initial state of the emitter, as well as its distance from the nanosphere. We find that the emitter population evolution varies between a gradually total decay and a partial decay combined with oscillatory population dynamics, depending strongly on the specific values of the above three parameters. Under strong coupling conditions, coherent population trapping can be observed in this system. We compare our exact results with results when the flat continuum approximation for the modified by the metallic nanosphere vacuum is applied. We conclude that the flat continuum approximation is an excellent approximation only when the spectral density of the system under study is characterized by non-overlapping plasmonic resonances.
Topological systems, such as fractional quantum Hall liquids, promise to successfully combat environmental decoherence while performing quantum computation. These highly correlated systems can support non-Abelian anyonic quasiparticles that can encod e exotic entangled states. To reveal the non-local character of these encoded states we demonstrate the violation of suitable Bell inequalities. We provide an explicit recipe for the preparation, manipulation and measurement of the desired correlations for a large class of topological models. This proposal gives an operational measure of non-locality for anyonic states and it opens up the possibility to violate the Bell inequalities in quantum Hall liquids or spin lattices.
Non-locality stands nowadays not only as one of the cornerstones of quantum theory, but also plays a crucial role in quantum information processing. Several experimental investigations of nonlocality have been carried out over the years. In spite of their fundamental relevance, however, all previous experiments do not consider a crucial ingredient that is ubiquitous in quantum networks: the fact that correlations between distant parties are mediated by several, typically independent, sources of quantum states. Here, using a photonic setup we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two independent sources. This scenario allows for the emergence of a new kind of non-local correlations that we experimentally witness by violating a novel Bell inequality. Our results provide the first experimental proof-of-principle of generalizations of Bells theorem for networks, a topic that has attracted growing attention and promises a novel route for quantum communication protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا