ﻻ يوجد ملخص باللغة العربية
Topological systems, such as fractional quantum Hall liquids, promise to successfully combat environmental decoherence while performing quantum computation. These highly correlated systems can support non-Abelian anyonic quasiparticles that can encode exotic entangled states. To reveal the non-local character of these encoded states we demonstrate the violation of suitable Bell inequalities. We provide an explicit recipe for the preparation, manipulation and measurement of the desired correlations for a large class of topological models. This proposal gives an operational measure of non-locality for anyonic states and it opens up the possibility to violate the Bell inequalities in quantum Hall liquids or spin lattices.
We consider a class of decoding algorithms that are applicable to error correction for both Abelian and non-Abelian anyons. This class includes multiple algorithms that have recently attracted attention, including the Bravyi-Haah RG decoder. They are
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontan
Anyons are particlelike excitations of strongly correlated phases of matter with fractional statistics, characterized by nontrivial changes in the wave function, generalizing Bose and Fermi statistics, when two of them are interchanged. This can be u
Bipartite entanglement entropies, calculated from the reduced density matrix of a subsystem, provide a description of the resources available within a system for performing quantum information processing. However, these quantities are not uniquely de
Two parts of an entangled quantum state can have a correlation in their joint behavior under measurements that is unexplainable by shared classical information. Such correlations are called non-local and have proven to be an interesting resource for