ﻻ يوجد ملخص باللغة العربية
Non-locality stands nowadays not only as one of the cornerstones of quantum theory, but also plays a crucial role in quantum information processing. Several experimental investigations of nonlocality have been carried out over the years. In spite of their fundamental relevance, however, all previous experiments do not consider a crucial ingredient that is ubiquitous in quantum networks: the fact that correlations between distant parties are mediated by several, typically independent, sources of quantum states. Here, using a photonic setup we investigate a quantum network consisting of three spatially separated nodes whose correlations are mediated by two independent sources. This scenario allows for the emergence of a new kind of non-local correlations that we experimentally witness by violating a novel Bell inequality. Our results provide the first experimental proof-of-principle of generalizations of Bells theorem for networks, a topic that has attracted growing attention and promises a novel route for quantum communication protocols.
Non-contextuality (NC) and Bell inequalities can be expressed as bounds $Omega$ for positive linear combinations $S$ of probabilities of events, $S leq Omega$. Exclusive events in $S$ can be represented as adjacent vertices of a graph called the excl
It is shown that the possibility of using Maxwell demon to cheating in quantum non-locality tests is prohibited by the Landauers erasure principle.
Oblivious transfer, a central functionality in modern cryptography, allows a party to send two one-bit messages to another who can choose one of them to read, remaining ignorant about the other, whereas the sender does not learn the receivers choice.
Quantum correlations are critical to our understanding of nature, with far-reaching technological and fundamental impact. These often manifest as violations of Bells inequalities, bounds derived from the assumptions of locality and realism, concepts
Bells theorem was a cornerstone for our understanding of quantum theory, and the establishment of Bell non-locality played a crucial role in the development of quantum information. Recently, its extension to complex networks has been attracting a gro