ترغب بنشر مسار تعليمي؟ اضغط هنا

A Measurement of the Cosmic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree Scales with POLARBEAR

121   0   0.0 ( 0 )
 نشر من قبل Kam Arnold
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a measurement of the B-mode polarization power spectrum in the cosmic microwave background (CMB) using the POLARBEAR experiment in Chile. The faint B-mode polarization signature carries information about the Universes entire history of gravitational structure formation, and the cosmic inflation that may have occurred in the very early Universe. Our measurement covers the angular multipole range 500 < l < 2100 and is based on observations of an effective sky area of 25 square degrees with 3.5 arcmin resolution at 150 GHz. On these angular scales, gravitational lensing of the CMB by intervening structure in the Universe is expected to be the dominant source of B-mode polarization. Including both systematic and statistical uncertainties, the hypothesis of no B-mode polarization power from gravitational lensing is rejected at 97.1% confidence. The band powers are consistent with the standard cosmological model. Fitting a single lensing amplitude parameter A_BB to the measured band powers, A_BB = 1.12 +/- 0.61 (stat) +0.04/-0.12 (sys) +/- 0.07 (multi), where A_BB = 1 is the fiducial WMAP-9 LCDM value. In this expression, stat refers to the statistical uncertainty, sys to the systematic uncertainty associated with possible biases from the instrument and astrophysical foregrounds, and multi to the calibration uncertainties that have a multiplicative effect on the measured amplitude A_BB.



قيم البحث

اقرأ أيضاً

We report an improved measurement of the cosmic microwave background (CMB) $B$-mode polarization power spectrum with the POLARBEAR experiment at 150 GHz. By adding new data collected during the second season of observations (2013-2014) to re-analyzed data from the first season (2012-2013), we have reduced twofold the band-power uncertainties. The band powers are reported over angular multipoles $500 leq ell leq 2100$, where the dominant $B$-mode signal is expected to be due to the gravitational lensing of $E$-modes. We reject the null hypothesis of no $B$-mode polarization at a confidence of 3.1$sigma$ including both statistical and systematic uncertainties. We test the consistency of the measured $B$-modes with the $Lambda$ Cold Dark Matter ($Lambda$CDM) framework by fitting for a single lensing amplitude parameter $A_L$ relative to the Planck best-fit model prediction. We obtain $A_L = 0.60 ^{+0.26} _{-0.24} ({rm stat}) ^{+0.00} _{-0.04}({rm inst}) pm 0.14 ({rm foreground}) pm 0.04 ({rm multi})$, where $A_{L}=1$ is the fiducial $Lambda$CDM value, and the details of the reported uncertainties are explained later in the manuscript.
Gravitational lensing due to the large-scale distribution of matter in the cosmos distorts the primordial Cosmic Microwave Background (CMB) and thereby induces new, small-scale $B$-mode polarization. This signal carries detailed information about the distribution of all the gravitating matter between the observer and CMB last scattering surface. We report the first direct evidence for polarization lensing based on purely CMB information, from using the four-point correlations of even- and odd-parity $E$- and $B$-mode polarization mapped over $sim30$ square degrees of the sky measured by the POLARBEAR experiment. These data were analyzed using a blind analysis framework and checked for spurious systematic contamination using null tests and simulations. Evidence for the signal of polarization lensing and lensing $B$-modes is found at 4.2$sigma$ (stat.+sys.) significance. The amplitude of matter fluctuations is measured with a precision of $27%$, and is found to be consistent with the Lambda Cold Dark Matter ($Lambda$CDM) cosmological model. This measurement demonstrates a new technique, capable of mapping all gravitating matter in the Universe, sensitive to the sum of neutrino masses, and essential for cleaning the lensing $B$-mode signal in searches for primordial gravitational waves.
Using only cosmic microwave background polarization data from the POLARBEAR experiment, we measure $B$-mode polarization delensing on subdegree scales at more than $5sigma$ significance. We achieve a 14% $B$-mode power variance reduction, the highest to date for internal delensing, and improve this result to 2% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial $B$-mode experiments.
We present a measurement of the $B$-mode polarization power spectrum of the cosmic microwave background (CMB) using taken from July 2014 to December 2016 with the POLARBEAR experiment. The CMB power spectra are measured using observations at 150 GHz with an instantaneous array sensitivity of $mathrm{NET}_mathrm{array}=23, mu mathrm{K} sqrt{mathrm{s}}$ on a 670 square degree patch of sky centered at (RA, Dec)=($+0^mathrm{h}12^mathrm{m}0^mathrm{s},-59^circ18^prime$). A continuously rotating half-wave plate is used to modulate polarization and to suppress low-frequency noise. We achieve $32,mumathrm{K}$-$mathrm{arcmin}$ effective polarization map noise with a knee in sensitivity of $ell = 90$, where the inflationary gravitational wave signal is expected to peak. The measured $B$-mode power spectrum is consistent with a $Lambda$CDM lensing and single dust component foreground model over a range of multipoles $50 leq ell leq 600$. The data disfavor zero $C_ell^{BB}$ at $2.2sigma$ using this $ell$ range of POLARBEAR data alone. We cross-correlate our data with Planck high frequency maps and find the low-$ell$ $B$-mode power in the combined dataset to be consistent with thermal dust emission. We place an upper limit on the tensor-to-scalar ratio $r < 0.90$ at 95% confidence level after marginalizing over foregrounds.
We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 which sur vey three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a Cold Dark Matter (CDM) cosmology and reject the no-lensing hypothesis at a confidence of 10.9 sigma including statistical and systematic uncertainties. We observe a value of A_L = 1.33 +/- 0.32 (statistical) +/- 0.02 (systematic) +/- 0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا