ﻻ يوجد ملخص باللغة العربية
It has been recognized that the observed galaxy distribution is susceptible to long-wavelength density and tidal fluctuations whose wavelengths exceed the accessible scale of a finite-volume observation, referred to as the super-sample modes. The super-sample modes modulate the growth and expansion rate of local structures, thus affecting the cosmological information encoded in the statistics of galaxy clustering data. In this paper, based on the Lagrangian perturbation theory, we develop a new formalism to systematically compute the response of a biased tracer of matter distribution to the super-sample modes at the field level. The formalism presented here reproduces the power spectrum responses that have been previously derived, and beyond the leading order, it also enables us to proceed to a higher-order calculation. As an application, we consider the statistics of the intrinsic alignments of galaxies and halos, and derive the field response of the galaxy/halo ellipticity to the super-sample modes. Possible impacts of the long-mode contributions on the covariance of the power spectra are also discussed, and the signal-to-noise ratios are estimated.
In this paper we test the perturbative halo bias model at the field level. The advantage of this approach is that any analysis can be done without sample variance if the same initial conditions are used in simulations and perturbation theory calculat
Large-scale Fourier modes of the cosmic density field are of great value for learning about cosmology because of their well-understood relationship to fluctuations in the early universe. However, cosmic variance generally limits the statistical preci
The statistical properties of the ellipticities of galaxy images depend on how galaxies form and evolve, and therefore constrain models of galaxy morphology, which are key to the removal of the intrinsic alignment contamination of cosmological weak l
We present a Bayesian reconstruction algorithm to generate unbiased samples of the underlying dark matter field from halo catalogues. Our new contribution consists of implementing a non-Poisson likelihood including a deterministic non-linear and scal
Galaxy shapes have been observed to align with external tidal fields generated by the large-scale structures of the Universe. While the main source for these tidal fields is provided by long-wavelength density perturbations, tensor perturbations also