ترغب بنشر مسار تعليمي؟ اضغط هنا

Primordial Gravitational Waves from Galaxy Intrinsic Alignments

113   0   0.0 ( 0 )
 نشر من قبل Matteo Biagetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy shapes have been observed to align with external tidal fields generated by the large-scale structures of the Universe. While the main source for these tidal fields is provided by long-wavelength density perturbations, tensor perturbations also contribute with a non-vanishing amplitude at linear order. We show that parity-breaking gravitational waves produced during inflation leave a distinctive imprint in the galaxy shape power spectrum which is not hampered by any scalar-induced tidal field. We also show that a certain class of tensor non-Gaussianities produced during inflation can leave a signature in the density-weighted galaxy shape power spectrum. We estimate the possibility of observing such imprints in future galaxy surveys.



قيم البحث

اقرأ أيضاً

92 - Ely D. Kovetz 2017
Primordial black holes (PBHs) have long been suggested as a candidate for making up some or all of the dark matter in the Universe. Most of the theoretically possible mass range for PBH dark matter has been ruled out with various null observations of expected signatures of their interaction with standard astrophysical objects. However, current constraints are significantly less robust in the 20 M_sun < M_PBH < 100 M_sun mass window, which has received much attention recently, following the detection of merging black holes with estimated masses of ~30 M_sun by LIGO and the suggestion that these could be black holes formed in the early Universe. We consider the potential of advanced LIGO (aLIGO) operating at design sensitivity to probe this mass range by looking for peaks in the mass spectrum of detected events. To quantify the background, which is due to black holes that are formed from dying stars, we model the shape of the stellar-black-hole mass function and calibrate its amplitude to match the O1 results. Adopting very conservative assumptions about the PBH and stellar-black-hole merger rates, we show that ~5 years of aLIGO data can be used to detect a contribution of >20 M_sun PBHs to dark matter down to f_PBH<0.5 at >99.9% confidence level. Combined with other probes that already suggest tension with f_PBH=1, the obtainable independent limits from aLIGO will thus enable a firm test of the scenario that PBHs make up all of dark matter.
165 - James B. Dent 2013
It has been shown that a cosmological background with an anisotropic stress tensor, appropriate for a free streaming thermal neutrino background, can damp primordial gravitational waves after they enter the horizon, and can thus affect the CMB B-mode polarization signature due to such tensor modes. Here we generalize this result, and examine the sensitivity of this effect to non-zero neutrino masses, extra neutrino species, and also a possible relativistic background of axions from axion strings. In particular, additional neutrinos with cosmologically interesting neutrino masses at the O(1) eV level will noticeably reduce damping compared to massless neutrinos for gravitational wave modes with $ktau_0 approx 100-200$, where $tau_0 approx 2/H_0$ and $H_0$ is the present Hubble parameter, while an axion background would produce a phase-dependent damping distinct from that produced by neutrinos.
131 - B. Joachimi 2012
The statistical properties of the ellipticities of galaxy images depend on how galaxies form and evolve, and therefore constrain models of galaxy morphology, which are key to the removal of the intrinsic alignment contamination of cosmological weak l ensing surveys, as well as to the calibration of weak lensing shape measurements. We construct such models based on the halo properties of the Millennium Simulation and confront them with a sample of 90,000 galaxies from the COSMOS Survey, covering three decades in luminosity and redshifts out to z=2. The ellipticity measurements are corrected for effects of point spread function smearing, spurious image distortions, and measurement noise. Dividing galaxies into early, late, and irregular types, we find that early-type galaxies have up to a factor of two lower intrinsic ellipticity dispersion than late-type galaxies. None of the samples shows evidence for redshift evolution, while the ellipticity dispersion for late-type galaxies scales strongly with absolute magnitude at the bright end. The simulation-based models reproduce the main characteristics of the intrinsic ellipticity distributions although which model fares best depends on the selection criteria of the galaxy sample. We observe fewer close-to-circular late-type galaxy images in COSMOS than expected for a sample of randomly oriented circular thick disks and discuss possible explanations for this deficit.
We show that the new precise measurements of Cosmic Microwave Background (CMB) temperature and polarization anisotropies made by the Planck satellite significantly improves previous constraints on the cosmic gravitational waves background (CGWB) at f requencies $f>10^{-15}$ Hz. On scales smaller than the horizon at the time of decoupling, primordial gravitational waves contribute to the total radiation content of the Universe. Considering adiabatic perturbations, CGWB affects temperature and polarization CMB power spectra and matter power spectrum in a manner identical to relativistic particles. Considering the latest Planck results we constrain the CGWB energy density to $Omega_{rm gw} h^2 <1.7times 10^{-6} $ at 95% CL. Combining CMB power spectra with lensing, BAO and primordial Deuterium abundance observations, we obtain $Omega_{rm gw} h^2 <1.2times 10^{-6} $ at 95% CL, improving previous Planck bounds by a factor 3 and the recent direct upper limit from the LIGO and VIRGO experiments a factor 2. A combined analysis of future satellite missions as COrE and EUCLID could improve current bound by more than an order of magnitude.
Using $N$-body simulations of cosmological large-scale structure formation, for the first time, we show that the anisotropic primordial non-Gaussianity (PNG) causes a scale-dependent modification, given by $1/k^2$ at small $k$ limit, in the three-dim ensional power spectra of halo shapes (intrinsic alignments), whilst the conventional power spectrum of halo number density field remains unaffected. We discuss that wide-area imaging and spectrocopic surveys observing the same region of the sky allow us to constrain the quadrupole PNG coefficient $f_{rm NL}^{s=2}$ at a precision comparable with or better than that of the cosmic microwave background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا