ﻻ يوجد ملخص باللغة العربية
Large-scale Fourier modes of the cosmic density field are of great value for learning about cosmology because of their well-understood relationship to fluctuations in the early universe. However, cosmic variance generally limits the statistical precision that can be achieved when constraining model parameters using these modes as measured in galaxy surveys, and moreover, these modes are sometimes inaccessible due to observational systematics or foregrounds. For some applications, both limitations can be circumvented by reconstructing large-scale modes using the correlations they induce between smaller-scale modes of an observed tracer (such as galaxy positions). In this paper, we further develop a formalism for this reconstruction, using a quadratic estimator similar to the one used for lensing of the cosmic microwave background. We incorporate nonlinearities from gravity, nonlinear biasing, and local-type primordial non-Gaussianity, and verify that the estimator gives the expected results when applied to N-body simulations. We then carry out forecasts for several upcoming surveys, demonstrating that, when reconstructed modes are included alongside directly-observed tracer density modes, constraints on local primordial non-Gaussianity are generically tightened by tens of percents compared to standard single-tracer analyses. In certain cases, these improvements arise from cosmic variance cancellation, with reconstructed modes taking the place of modes of a separate tracer, thus enabling an effective multitracer approach with single-tracer observations.
Upcoming galaxy redshift surveys promise to significantly improve current limits on primordial non-Gaussianity (PNG) through measurements of 2- and 3-point correlation functions in Fourier space. However, realizing the full potential of this dataset
Here we review the present status of modelling of and searching for primordial non-Gaussianity of cosmological perturbations. After introducing the models for non-Gaussianity generation during inflation, we discuss the search for non-Gaussian signatu
Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One
Enormous information about interactions is contained in the non-Gaussianities of the primordial curvature perturbations, which are essential to break the degeneracy of inflationary models. We study the primordial bispectra for G-inflation models pred
The statistical properties of the primordial perturbations contain clues about the origins of those fluctuations. Although the Planck collaboration has recently obtained tight constraints on primordial non-gaussianity from cosmic microwave background