ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal spin- and planar-quantum squeezing in superpositions of spin coherent states

153   0   0.0 ( 0 )
 نشر من قبل Richard Birrittella Jr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the presence of spin- and planar- squeezing in generalized superpositions of atomic (or spin) coherent states (ACS). Spin-squeezing has been shown to be a useful tool in determining the presence of entanglement in multipartite systems, such as collections of two-level atoms, as well as being an indication of reduced projection noise and sub-shot-noise limited phase uncertainty in Ramsey spectroscopy, suitable for measuring phases $phisim 0$. On the other hand, planar-squeezed states display reduced projection noise in two directions simultaneously and have been shown to lead to enhanced metrological precision in measuring phases without the need for explicit prior knowledge of the phase value. In this paper, we show that the generalized superposition state can be parametrized to display both spin-squeezing along all orthogonal axes and planar-squeezing along all orthogonal planes for all values of $J>1/2$. We close with an application of the maximally spin- and planar-squeezed states to quantum metrology.

قيم البحث

اقرأ أيضاً

Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin sq ueezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise which outperforms conventional methods. Potential experimental implementations are discussed.
145 - P. Adam , E. Molnar , G. Mogyorosi 2014
We consider the optimal approximation of certain quantum states of a harmonic oscillator with the superposition of a finite number of coherent states in phase space placed either on an ellipse or on a certain lattice. These scenarios are currently ex perimentally feasible. The parameters of the ellipse and the lattice and the coefficients of the constituent coherent states are optimized numerically, via a genetic algorithm, in order to obtain the best approximation. It is found that for certain quantum states the obtained approximation is better than the ones known from the literature thus far.
This paper reviews quantum spin squeezing, which characterizes the sensitivity of a state with respect to an SU(2) rotation, and is significant for both entanglement detection and high-precision metrology. We first present various definitions of spin squeezing parameters, explain their origin and properties for typical states, and then discuss spin-squeezed states produced with the Ising and the nonlinear twisting Hamiltonians. Afterwards, we explain correlations and entanglement in spin-squeezed states, as well as the relations between spin squeezing and quantum Fisher information, where the latter plays a central role in quantum metrology. We also review the applications of spin squeezing for detecting quantum chaos and quantum phase transitions, as well as the influence of decoherence on spin-squeezed states. Finally, several experiments are discussed including: producing spin squeezed states via particle collisions in Bose-Einstein condensates, mapping photon squeezing onto atomic ensembles, and quantum non-demolition measurements.
131 - Bo Lan , Xue-xiang Xu 2021
Based on N different coherent states with equal weights and phase-space rotation symmetry, we introduce N-headed incoherent superposition states (NHICSSs) and N-headed coherent superposition states (NHCSSs). These N coherent states are associated wit h N-order roots of the same complex number. We study and compare properties of NHICSSs and NHCSSs, including average photon number, Mandel Q parameter, quadrature squeezing, Fock matrix elements and Wigner function. Among all these states, only 2HCSS (i.e., Schrodinger cat state) presents quadrature-squeezing effect. Our theoretical results can be used as a reference for researchers in this field.
Previously a new scheme of quantum information processing based on spin coherent states of two component Bose-Einstein condensates was proposed (Byrnes {it et al.} Phys. Rev. A 85, 40306(R)). In this paper we give a more detailed exposition of the sc heme, expanding on several aspects that were not discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct a general framework for quantum algorithms to be executed using multiple spin coherent states, which are individually controlled. We illustrate the scheme by applications to quantum information protocols, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا