ترغب بنشر مسار تعليمي؟ اضغط هنا

Macroscopic quantum information processing using spin coherent states

247   0   0.0 ( 0 )
 نشر من قبل Daniel Rosseau
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Previously a new scheme of quantum information processing based on spin coherent states of two component Bose-Einstein condensates was proposed (Byrnes {it et al.} Phys. Rev. A 85, 40306(R)). In this paper we give a more detailed exposition of the scheme, expanding on several aspects that were not discussed in full previously. The basic concept of the scheme is that spin coherent states are used instead of qubits to encode qubit information, and manipulated using collective spin operators. The scheme goes beyond the continuous variable regime such that the full space of the Bloch sphere is used. We construct a general framework for quantum algorithms to be executed using multiple spin coherent states, which are individually controlled. We illustrate the scheme by applications to quantum information protocols, and discuss possible experimental implementations. Decoherence effects are analyzed under both general conditions and for the experimental implementation proposed.



قيم البحث

اقرأ أيضاً

We develop a theoretical framework for the exploration of quantum mechanical coherent population transfer phenomena, with the ultimate goal of constructing faithful models of devices for classical and quantum information processing applications. We b egin by outlining a general formalism for weak-field quantum optics in the Schr{o}dinger picture, and we include a general phenomenological representation of Lindblad decoherence mechanisms. We use this formalism to describe the interaction of a single stationary multilevel atom with one or more propagating classical or quantum laser fields, and we describe in detail several manifestations and applications of electromagnetically induced transparency. In addition to providing a clear description of the nonlinear optical characteristics of electromagnetically transparent systems that lead to ``ultraslow light, we verify that -- in principle -- a multi-particle atomic or molecular system could be used as either a low power optical switch or a quantum phase shifter. However, we demonstrate that the presence of significant dephasing effects destroys the induced transparency, and that increasing the number of particles weakly interacting with the probe field only reduces the nonlinearity further. Finally, a detailed calculation of the relative quantum phase induced by a system of atoms on a superposition of spatially distinct Fock states predicts that a significant quasi-Kerr nonlinearity and a low entropy cannot be simultaneously achieved in the presence of arbitrary spontaneous emission rates. Within our model, we identify the constraints that need to be met for this system to act as a one-qubit and a two-qubit conditional phase gate.
55 - H. Jeong , M. S. Kim 2001
Universal quantum computation using optical coherent states is studied. A teleportation scheme for a coherent-state qubit is developed and applied to gate operations. This scheme is shown to be robust to detection inefficiency.
The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant timescales. A solid-state quantum computer based on localized electron spins as qubits is theref ore of potential interest. Here, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed. The effective long-range interaction is mediated by the vacuum field of a high finesse microcavity. By using conduction-band-hole Raman transitions induced by classical laser fields and the cavity-mode, parallel controlled-not operations and arbitrary single qubit rotations can be realized. Optical techniques can also be used to measure the spin-state of each quantum dot.
The success of the emerging field of solid-state optical quantum information processing (QIP) critically depends on the access to resonant optical materials. Rare-earth ions (REIs) are suitable candidates for QIP protocols due to their extraordinary photo-physical and magnetic quantum properties such as long optical and spin coherence lifetimes ($T_2$). However, molecules incorporating REIs, despite having advantageous properties such as atomically exact quantum tunability, inherent scalability, and large portability, have not yet been studied for QIP applications. As a first testimony of the usefulness of REI molecules for optical QIP applications, we demonstrate in this study that narrow spectral holes can be burned in the inhomogeneously broadened $^5$D$_0to^7$F$_0$ optical transition of a binuclear Eu(III) complex, rendering a homogeneous linewidth ($Gamma_h$) = 22 $pm$ 1 MHz, which translates as $T_2 = 14.5$ $pm$ 0.7 ns at 1.4 K. Moreover, long-lived spectral holes are observed, demonstrating efficient polarization of Eu(III) ground state nuclear spins, a fundamental requirement for all-optical spin initialization and addressing. These results elucidate the usefulness of REI-based molecular complexes as versatile coherent light-spin interfaces for applications in quantum communications and processing.
We investigate experiments of continuous-variable quantum information processing based on the teleportation scheme. Quantum teleportation, which is realized by a two-mode squeezed vacuum state and measurement-and-feedforward, is considered as an elem entary quantum circuit as well as quantum communication. By modifying ancilla states or measurement-and-feedforwards, we can realize various quantum circuits which suffice for universal quantum computation. In order to realize the teleportation-based computation we improve the level of squeezing, and fidelity of teleportation. With a high-fidelity teleporter we demonstrate some advanced teleportation experiments, i.e., teleportation of a squeezed state and sequential teleportation of a coherent state. Moreover, as an example of the teleportation-based computation, we build a QND interaction gate which is a continuous-variable analog of a CNOT gate. A QND interaction gate is constructed only with ancillary squeezed vacuum states and measurement-and-feedforwards. We also create continuous-variable four mode cluster type entanglement for further application, namely, one-way quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا