ﻻ يوجد ملخص باللغة العربية
This paper reviews quantum spin squeezing, which characterizes the sensitivity of a state with respect to an SU(2) rotation, and is significant for both entanglement detection and high-precision metrology. We first present various definitions of spin squeezing parameters, explain their origin and properties for typical states, and then discuss spin-squeezed states produced with the Ising and the nonlinear twisting Hamiltonians. Afterwards, we explain correlations and entanglement in spin-squeezed states, as well as the relations between spin squeezing and quantum Fisher information, where the latter plays a central role in quantum metrology. We also review the applications of spin squeezing for detecting quantum chaos and quantum phase transitions, as well as the influence of decoherence on spin-squeezed states. Finally, several experiments are discussed including: producing spin squeezed states via particle collisions in Bose-Einstein condensates, mapping photon squeezing onto atomic ensembles, and quantum non-demolition measurements.
Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin sq
Arrays of atoms trapped in optical tweezers combine features of programmable analog quantum simulators with atomic quantum sensors. Here we propose variational quantum algorithms, tailored for tweezer arrays as programmable quantum sensors, capable o
Quantum metrology enables estimation of optical phase shifts with precision beyond the shot-noise limit. One way to exceed this limit is to use squeezed states, where the quantum noise of one observable is reduced at the expense of increased quantum
We discuss the theory and experimental considerations of a quantum feedback scheme for producing deterministically reproducible spin squeezing. Continuous nondemolition atom number measurement from monitoring a probe field conditionally squeezes the
We investigate the presence of spin- and planar- squeezing in generalized superpositions of atomic (or spin) coherent states (ACS). Spin-squeezing has been shown to be a useful tool in determining the presence of entanglement in multipartite systems,