ﻻ يوجد ملخص باللغة العربية
All global symmetries are expected to be explicitly broken by quantum gravitational effects, and yet may play an important role in Particle Physics and Cosmology. As such, any evidence for a well-preserved global symmetry would give insight into an important feature of gravity. We argue that a recently reported $2.4sigma$ detection of cosmic birefringence in the Cosmic Microwave Background could be the first observational indication of a well-preserved (although spontaneously broken) global symmetry in nature. A compelling solution to explain this measurement is a very light pseudoscalar field that interacts with electromagnetism. In order for gravitational effects not to lead to large corrections to the mass of this scalar field, we show that the breaking of global symmetries by gravity should be bounded above. Finally, we highlight that any bound of this type would have clear implications for the construction of theories of quantum gravity, as well as for many particle physics scenarios.
The de Rham-Gabadadze-Tolley massive gravity admits pp-wave backgrounds on which linear fluctuations are shown to undergo time advances for all values of the parameters. The perturbations may propagate in closed time-like curves unless the parameter
We study quadratic gravity $R^2+R_{[mu u]}^2$ in the Palatini formalism where the connection and the metric are independent. This action has a {it gauged} scale symmetry (also known as Weyl gauge symmetry) of Weyl gauge field $v_mu= (tildeGamma_mu-Ga
We find exact static stringy solutions of Horava-Lifshitz gravity with the projectability condition but imposing the detailed balance condition near the UV fixed point, and propose a method on constraining the possible pattern of flows in Horava-Lifs
We study the cosmic no-hair in the presence of spin-2 matter, i.e. in bimetric gravity. We obtain stable de Sitter solutions with the cosmological constant in the physical sector and find an evidence that the cosmic no-hair is correct. In the presenc
Axion couplings to photons could induce photon-axion conversion in the presence of magnetic fields in the Universe. The conversion could impact various cosmic distance measurements such as luminosity distances to type Ia supernovae and angular distan