ترغب بنشر مسار تعليمي؟ اضغط هنا

Image2Point: 3D Point-Cloud Understanding with Pretrained 2D ConvNets

136   0   0.0 ( 0 )
 نشر من قبل Chenfeng Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D point-clouds and 2D images are different visual representations of the physical world. While human vision can understand both representations, computer vision models designed for 2D image and 3D point-cloud understanding are quite different. Our paper investigates the potential for transferability between these two representations by empirically investigating whether this approach works, what factors affect the transfer performance, and how to make it work even better. We discovered that we can indeed use the same neural net model architectures to understand both images and point-clouds. Moreover, we can transfer pretrained weights from image models to point-cloud models with minimal effort. Specifically, based on a 2D ConvNet pretrained on an image dataset, we can transfer the image model to a point-cloud model by textit{inflating} 2D convolutional filters to 3D then finetuning its input, output, and optionally normalization layers. The transferred model can achieve competitive performance on 3D point-cloud classification, indoor and driving scene segmentation, even beating a wide range of point-cloud models that adopt task-specific architectures and use a variety of tricks.



قيم البحث

اقرأ أيضاً

158 - Saining Xie , Jiatao Gu , Demi Guo 2020
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been inst rumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.
Deep neural networks are found to be prone to adversarial examples which could deliberately fool the model to make mistakes. Recently, a few of works expand this task from 2D image to 3D point cloud by using global point cloud optimization. However, the perturbations of global point are not effective for misleading the victim model. First, not all points are important in optimization toward misleading. Abundant points account considerable distortion budget but contribute trivially to attack. Second, the multi-label optimization is suboptimal for adversarial attack, since it consumes extra energy in finding multi-label victim model collapse and causes instance transformation to be dissimilar to any particular instance. Third, the independent adversarial and perceptibility losses, caring misclassification and dissimilarity separately, treat the updating of each point equally without a focus. Therefore, once perceptibility loss approaches its budget threshold, all points would be stock in the surface of hypersphere and attack would be locked in local optimality. Therefore, we propose a local aggressive adversarial attacks (L3A) to solve above issues. Technically, we select a bunch of salient points, the high-score subset of point cloud according to gradient, to perturb. Then a flow of aggressive optimization strategies are developed to reinforce the unperceptive generation of adversarial examples toward misleading victim models. Extensive experiments on PointNet, PointNet++ and DGCNN demonstrate the state-of-the-art performance of our method against existing adversarial attack methods.
In this paper, we present a novel deep method to reconstruct a point cloud of an object from a single still image. Prior arts in the field struggle to reconstruct an accurate and scalable 3D model due to either the inefficient and expensive 3D repres entations, the dependency between the output and number of model parameters or the lack of a suitable computing operation. We propose to overcome these by deforming a random point cloud to the object shape through two steps: feature blending and deformation. In the first step, the global and point-specific shape features extracted from a 2D object image are blended with the encoded feature of a randomly generated point cloud, and then this mixture is sent to the deformation step to produce the final representative point set of the object. In the deformation process, we introduce a new layer termed as GraphX that considers the inter-relationship between points like common graph convolutions but operates on unordered sets. Moreover, with a simple trick, the proposed model can generate an arbitrary-sized point cloud, which is the first deep method to do so. Extensive experiments verify that we outperform existing models and halve the state-of-the-art distance score in single image 3D reconstruction.
In 2D image processing, some attempts decompose images into high and low frequency components for describing edge and smooth parts respectively. Similarly, the contour and flat area of 3D objects, such as the boundary and seat area of a chair, descri be different but also complementary geometries. However, such investigation is lost in previous deep networks that understand point clouds by directly treating all points or local patches equally. To solve this problem, we propose Geometry-Disentangled Attention Network (GDANet). GDANet introduces Geometry-Disentangle Module to dynamically disentangle point clouds into the contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components. Then GDANet exploits Sharp-Gentle Complementary Attention Module that regards the features from sharp and gentle variation components as two holistic representations, and pays different attentions to them while fusing them respectively with original point cloud features. In this way, our method captures and refines the holistic and complementary 3D geometric semantics from two distinct disentangled components to supplement the local information. Extensive experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters. Code is released on https://github.com/mutianxu/GDANet.
We study the problem of labelling effort for semantic segmentation of large-scale 3D point clouds. Existing works usually rely on densely annotated point-level semantic labels to provide supervision for network training. However, in real-world scenar ios that contain billions of points, it is impractical and extremely costly to manually annotate every single point. In this paper, we first investigate whether dense 3D labels are truly required for learning meaningful semantic representations. Interestingly, we find that the segmentation performance of existing works only drops slightly given as few as 1% of the annotations. However, beyond this point (e.g. 1 per thousand and below) existing techniques fail catastrophically. To this end, we propose a new weak supervision method to implicitly augment the total amount of available supervision signals, by leveraging the semantic similarity between neighboring points. Extensive experiments demonstrate that the proposed Semantic Query Network (SQN) achieves state-of-the-art performance on six large-scale open datasets under weak supervision schemes, while requiring only 1000x fewer labeled points for training. The code is available at https://github.com/QingyongHu/SQN.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا