ﻻ يوجد ملخص باللغة العربية
3D point-clouds and 2D images are different visual representations of the physical world. While human vision can understand both representations, computer vision models designed for 2D image and 3D point-cloud understanding are quite different. Our paper investigates the potential for transferability between these two representations by empirically investigating whether this approach works, what factors affect the transfer performance, and how to make it work even better. We discovered that we can indeed use the same neural net model architectures to understand both images and point-clouds. Moreover, we can transfer pretrained weights from image models to point-cloud models with minimal effort. Specifically, based on a 2D ConvNet pretrained on an image dataset, we can transfer the image model to a point-cloud model by textit{inflating} 2D convolutional filters to 3D then finetuning its input, output, and optionally normalization layers. The transferred model can achieve competitive performance on 3D point-cloud classification, indoor and driving scene segmentation, even beating a wide range of point-cloud models that adopt task-specific architectures and use a variety of tricks.
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been inst
Deep neural networks are found to be prone to adversarial examples which could deliberately fool the model to make mistakes. Recently, a few of works expand this task from 2D image to 3D point cloud by using global point cloud optimization. However,
In this paper, we present a novel deep method to reconstruct a point cloud of an object from a single still image. Prior arts in the field struggle to reconstruct an accurate and scalable 3D model due to either the inefficient and expensive 3D repres
In 2D image processing, some attempts decompose images into high and low frequency components for describing edge and smooth parts respectively. Similarly, the contour and flat area of 3D objects, such as the boundary and seat area of a chair, descri
We study the problem of labelling effort for semantic segmentation of large-scale 3D point clouds. Existing works usually rely on densely annotated point-level semantic labels to provide supervision for network training. However, in real-world scenar