ترغب بنشر مسار تعليمي؟ اضغط هنا

PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding

159   0   0.0 ( 0 )
 نشر من قبل Saining Xie
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (eg., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -- demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning.



قيم البحث

اقرأ أيضاً

We describe a simple pre-training approach for point clouds. It works in three steps: 1. Mask all points occluded in a camera view; 2. Learn an encoder-decoder model to reconstruct the occluded points; 3. Use the encoder weights as initialisation for downstream point cloud tasks. We find that even when we construct a single pre-training dataset (from ModelNet40), this pre-training method improves accuracy across different datasets and encoders, on a wide range of downstream tasks. Specifically, we show that our method outperforms previous pre-training methods in object classification, and both part-based and semantic segmentation tasks. We study the pre-trained features and find that they lead to wide downstream minima, have high transformation invariance, and have activations that are highly correlated with part labels. Code and data are available at: https://github.com/hansen7/OcCo
The annotation for large-scale point clouds is still time-consuming and unavailable for many real-world tasks. Point cloud pre-training is one potential solution for obtaining a scalable model for fast adaptation. Therefore, in this paper, we investi gate a new self-supervised learning approach, called Mixing and Disentangling (MD), for point cloud pre-training. As the name implies, we explore how to separate the original point cloud from the mixed point cloud, and leverage this challenging task as a pretext optimization objective for model training. Considering the limited training data in the original dataset, which is much less than prevailing ImageNet, the mixing process can efficiently generate more high-quality samples. We build one baseline network to verify our intuition, which simply contains two modules, encoder and decoder. Given a mixed point cloud, the encoder is first pre-trained to extract the semantic embedding. Then an instance-adaptive decoder is harnessed to disentangle the point clouds according to the embedding. Albeit simple, the encoder is inherently able to capture the point cloud keypoints after training and can be fast adapted to downstream tasks including classification and segmentation by the pre-training and fine-tuning paradigm. Extensive experiments on two datasets show that the encoder + ours (MD) significantly surpasses that of the encoder trained from scratch and converges quickly. In ablation studies, we further study the effect of each component and discuss the advantages of the proposed self-supervised learning strategy. We hope this self-supervised learning attempt on point clouds can pave the way for reducing the deeply-learned model dependence on large-scale labeled data and saving a lot of annotation costs in the future.
3D point-clouds and 2D images are different visual representations of the physical world. While human vision can understand both representations, computer vision models designed for 2D image and 3D point-cloud understanding are quite different. Our p aper investigates the potential for transferability between these two representations by empirically investigating whether this approach works, what factors affect the transfer performance, and how to make it work even better. We discovered that we can indeed use the same neural net model architectures to understand both images and point-clouds. Moreover, we can transfer pretrained weights from image models to point-cloud models with minimal effort. Specifically, based on a 2D ConvNet pretrained on an image dataset, we can transfer the image model to a point-cloud model by textit{inflating} 2D convolutional filters to 3D then finetuning its input, output, and optionally normalization layers. The transferred model can achieve competitive performance on 3D point-cloud classification, indoor and driving scene segmentation, even beating a wide range of point-cloud models that adopt task-specific architectures and use a variety of tricks.
In this paper, we present a large scale unlabeled person re-identification (Re-ID) dataset LUPerson and make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature repres entation. This is to address the problem that all existing person Re-ID datasets are all of limited scale due to the costly effort required for data annotation. Previous research tries to leverage models pre-trained on ImageNet to mitigate the shortage of person Re-ID data but suffers from the large domain gap between ImageNet and person Re-ID data. LUPerson is an unlabeled dataset of 4M images of over 200K identities, which is 30X larger than the largest existing Re-ID dataset. It also covers a much diverse range of capturing environments (eg, camera settings, scenes, etc.). Based on this dataset, we systematically study the key factors for learning Re-ID features from two perspectives: data augmentation and contrastive loss. Unsupervised pre-training performed on this large-scale dataset effectively leads to a generic Re-ID feature that can benefit all existing person Re-ID methods. Using our pre-trained model in some basic frameworks, our methods achieve state-of-the-art results without bells and whistles on four widely used Re-ID datasets: CUHK03, Market1501, DukeMTMC, and MSMT17. Our results also show that the performance improvement is more significant on small-scale target datasets or under few-shot setting.
In 2D image processing, some attempts decompose images into high and low frequency components for describing edge and smooth parts respectively. Similarly, the contour and flat area of 3D objects, such as the boundary and seat area of a chair, descri be different but also complementary geometries. However, such investigation is lost in previous deep networks that understand point clouds by directly treating all points or local patches equally. To solve this problem, we propose Geometry-Disentangled Attention Network (GDANet). GDANet introduces Geometry-Disentangle Module to dynamically disentangle point clouds into the contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components. Then GDANet exploits Sharp-Gentle Complementary Attention Module that regards the features from sharp and gentle variation components as two holistic representations, and pays different attentions to them while fusing them respectively with original point cloud features. In this way, our method captures and refines the holistic and complementary 3D geometric semantics from two distinct disentangled components to supplement the local information. Extensive experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters. Code is released on https://github.com/mutianxu/GDANet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا