ﻻ يوجد ملخص باللغة العربية
The electron-boson spectral density (or glue) function can be obtained from measured optical scattering rate by solving a generalized Allen formula, which relates the two quantities with an integral equation and is an inversion problem. Thus far, numerical approaches, such as the maximum entropy method (MEM) and the least squares fitting method, have been applied for solving the generalized Allen formula. Here, we developed a new method to obtain the glue functions from the optical scattering rate using a machine learning approach (MLA). We found that the MLA is more robust against random noise compared with the MEM. We applied the new developed MLA to experimentally measured optical scattering rates and obtained reliable glue functions in terms of their shapes including the amplitudes. We expect that the MLA can be a useful and rapid method for solving other inversion problems, which may contain random noise.
Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion
We introduce an analysis model, an extended Drude-Lorentz model, and apply it to Fe-pnictide systems to extract their electron-boson spectral density functions (or correlation spectra). The extended Drude-Lorentz model consists of an extended Drude m
The ladder compound Sr$_{14}$Cu$_{24}$O$_{41}$ is of interest both as a quasi-one-dimensional analog of the superconducting cuprates and as a superconductor in its own right when Sr is substituted by Ca. In order to model resonant inelastic x-ray sca
In this paper we examine the effects of electron-hole asymmetry as a consequence of strong correlations on the electronic Raman scattering in the normal state of copper oxide high temperature superconductors. Using determinant quantum Monte Carlo sim
Several experimental and theoretical studies indicate the existence of a critical point separating the underdoped and overdoped regions of the high-T_c cuprates phase diagram. There are at least two distinct proposals on the critical concentration an