ﻻ يوجد ملخص باللغة العربية
We introduce an analysis model, an extended Drude-Lorentz model, and apply it to Fe-pnictide systems to extract their electron-boson spectral density functions (or correlation spectra). The extended Drude-Lorentz model consists of an extended Drude mode for describing correlated charge carriers and Lorentz modes for interband transitions. The extended Drude mode can be obtained by a reverse process starting from the electron-boson spectral density function and extending to the optical self-energy, and eventually, to the optical conductivity. Using the extended Drude-Lorentz model, we obtained the electron-boson spectral density functions of K-doped BaFe$_2$As$_2$ (Ba-122) at four different doping levels. We discuss the doping-dependent properties of the electron-boson spectral density function of K-doped Ba-122. This new approach is very helpful for understanding and analyzing measured optical spectra of strongly correlation electron systems, including high-temperature superconductors (cuprates and Fe-pnictides).
The electron-boson spectral density (or glue) function can be obtained from measured optical scattering rate by solving a generalized Allen formula, which relates the two quantities with an integral equation and is an inversion problem. Thus far, num
Renormalization of non-magnetic impurity potential by strong electron correlation is investigated in detail. We adopt the t-t-t-J model and consider mainly a delta-function impurity potential. The variational Monte Carlo method shows that impurity po
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental man
We employ the phenomenological theory of the quasiparticle relaxation based on the simplified two-band description and the spin-fluctuation induced interband coupling to analyze recent normal-state transport data in electron-doped iron pnictides, in
We have performed an angle-resolved photoemission study of the iron pnictide superconductor KFe2As2 with Tc 4 K. Most of the observed Fermi surfaces show almost two-dimensional shapes, while one of the quasi-particle bands near the Fermi level has a