ﻻ يوجد ملخص باللغة العربية
Weyl semimetal Td-phase WTe2 possesses the spin-resolved band structure with strong spin-orbit coupling, holding promises as a useful spin source material. The noncentrosymmetric crystalline structure of Td-WTe2 endows the generation of the out-of-plane polarized spin, which is of great interest in magnetic memory applications. Previously, WTe2 was explored in spin devices based on mechanically exfoliated single crystal flakes with a size of micrometers. For practical spintronics applications, it is highly desirable to implement wafer-scale thin films. In this work, we utilize centimeter-scale chemical vapor deposition (CVD)-grown Td-WTe2 thin films and study the spin current generation by the spin torque ferromagnetic resonance technique. We find the in-plane and out-of-plane spin conductivities of 7.36 x 10^3 (h/2e) (ohm-m)^-1 and 1.76 x 10^3 (h/2e) (ohm-m)^-1, respectively, in CVD-growth 5 nm-WTe2. We further demonstrate the current-induced magnetization switching in WTe2/NiFe at room temperature in the domain wall motion regime, which may invigorate potential spintronic device innovations based on Weyl semimetals.
Conversion of pure spin current to charge current in single-layer graphene (SLG) is investigated by using spin pumping. Large-area SLG grown by chemical vapor deposition is used for the conversion. Efficient spin accumulation in SLG by spin pumping e
High spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with a ferromagnetic layer show promise for next generation magnetic memory and logic devices. SOTs generated from the in-plane spin polarization along y-ax
Through a combination of monitoring the Raman spectral characteristics of 2D materials grown on copper catalyst layers, and wafer scale automated detection of the fraction of transferred material, we reproducibly achieve transfers with over 97.5% mon
Notwithstanding numerous density functional studies on the chemically induced transformation of multilayer graphene into a diamond-like film, a comprehensive convincing experimental proof of such a conversion is still lacking. We show that the fluori
Silicon-based quantum bits with electron spins in quantum dots or nuclear spins on dopants are serious contenders in the race for quantum computation. Added to process integration maturity, the lack of nuclear spins in the most abundant $^{28}$silico