ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Agent Cooperative Bidding Games for Multi-Objective Optimization in e-Commercial Sponsored Search

125   0   0.0 ( 0 )
 نشر من قبل Hongchang Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Bid optimization for online advertising from single advertisers perspective has been thoroughly investigated in both academic research and industrial practice. However, existing work typically assume competitors do not change their bids, i.e., the wining price is fixed, leading to poor performance of the derived solution. Although a few studies use multi-agent reinforcement learning to set up a cooperative game, they still suffer the following drawbacks: (1) They fail to avoid collusion solutions where all the advertisers involved in an auction collude to bid an extremely low price on purpose. (2) Previous works cannot well handle the underlying complex bidding environment, leading to poor model convergence. This problem could be amplified when handling multiple objectives of advertisers which are practical demands but not considered by previous work. In this paper, we propose a novel multi-objective cooperative bid optimization formulation called Multi-Agent Cooperative bidding Games (MACG). MACG sets up a carefully designed multi-objective optimization framework where different objectives of advertisers are incorporated. A global objective to maximize the overall profit of all advertisements is added in order to encourage better cooperation and also to protect self-bidding advertisers. To avoid collusion, we also introduce an extra platform revenue constraint. We analyze the optimal functional form of the bidding formula theoretically and design a policy network accordingly to generate auction-level bids. Then we design an efficient multi-agent evolutionary strategy for model optimization. Offline experiments and online A/B tests conducted on the Taobao platform indicate both single advertisers objective and global profit have been significantly improved compared to state-of-art methods.



قيم البحث

اقرأ أيضاً

We study fairness through the lens of cooperative multi-agent learning. Our work is motivated by empirical evidence that naive maximization of team reward yields unfair outcomes for individual team members. To address fairness in multi-agent contexts , we introduce team fairness, a group-based fairness measure for multi-agent learning. We then prove that it is possible to enforce team fairness during policy optimization by transforming the teams joint policy into an equivariant map. We refer to our multi-agent learning strategy as Fairness through Equivariance (Fair-E) and demonstrate its effectiveness empirically. We then introduce Fairness through Equivariance Regularization (Fair-ER) as a soft-constraint version of Fair-E and show that it reaches higher levels of utility than Fair-E and fairer outcomes than non-equivariant policies. Finally, we present novel findings regarding the fairness-utility trade-off in multi-agent settings; showing that the magnitude of the trade-off is dependent on agent skill level.
Proximal Policy Optimization (PPO) is a popular on-policy reinforcement learning algorithm but is significantly less utilized than off-policy learning algorithms in multi-agent settings. This is often due the belief that on-policy methods are signifi cantly less sample efficient than their off-policy counterparts in multi-agent problems. In this work, we investigate Multi-Agent PPO (MAPPO), a variant of PPO which is specialized for multi-agent settings. Using a 1-GPU desktop, we show that MAPPO achieves surprisingly strong performance in three popular multi-agent testbeds: the particle-world environments, the Starcraft multi-agent challenge, and the Hanabi challenge, with minimal hyperparameter tuning and without any domain-specific algorithmic modifications or architectures. In the majority of environments, we find that compared to off-policy baselines, MAPPO achieves strong results while exhibiting comparable sample efficiency. Finally, through ablation studies, we present the implementation and algorithmic factors which are most influential to MAPPOs practical performance.
Multi-agent reinforcement learning (MARL) under partial observability has long been considered challenging, primarily due to the requirement for each agent to maintain a belief over all other agents local histories -- a domain that generally grows ex ponentially over time. In this work, we investigate a partially observable MARL problem in which agents are cooperative. To enable the development of tractable algorithms, we introduce the concept of an information state embedding that serves to compress agents histories. We quantify how the compression error influences the resulting value functions for decentralized control. Furthermore, we propose an instance of the embedding based on recurrent neural networks (RNNs). The embedding is then used as an approximate information state, and can be fed into any MARL algorithm. The proposed embed-then-learn pipeline opens the black-box of existing (partially observable) MARL algorithms, allowing us to establish some theoretical guarantees (error bounds of value functions) while still achieving competitive performance with many end-to-end approaches.
Online real-time bidding (RTB) is known as a complex auction game where ad platforms seek to consider various influential key performance indicators (KPIs), like revenue and return on investment (ROI). The trade-off among these competing goals needs to be balanced on a massive scale. To address the problem, we propose a multi-objective reinforcement learning algorithm, named MoTiAC, for the problem of bidding optimization with various goals. Specifically, in MoTiAC, instead of using a fixed and linear combination of multiple objectives, we compute adaptive weights overtime on the basis of how well the current state agrees with the agents prior. In addition, we provide interesting properties of model updating and further prove that Pareto optimality could be guaranteed. We demonstrate the effectiveness of our method on a real-world commercial dataset. Experiments show that the model outperforms all state-of-the-art baselines.
91 - Runyu Zhang , Zhaolin Ren , Na Li 2021
We study the performance of the gradient play algorithm for multi-agent tabular Markov decision processes (MDPs), which are also known as stochastic games (SGs), where each agent tries to maximize its own total discounted reward by making decisions i ndependently based on current state information which is shared between agents. Policies are directly parameterized by the probability of choosing a certain action at a given state. We show that Nash equilibria (NEs) and first order stationary policies are equivalent in this setting, and give a non-asymptotic global convergence rate analysis to an $epsilon$-NE for a subclass of multi-agent MDPs called Markov potential games, which includes the cooperative setting with identical rewards among agents as an important special case. Our result shows that the number of iterations to reach an $epsilon$-NE scales linearly, instead of exponentially, with the number of agents. Local geometry and local stability are also considered. For Markov potential games, we prove that strict NEs are local maxima of the total potential function and fully-mixed NEs are saddle points. We also give a local convergence rate around strict NEs for more general settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا