ترغب بنشر مسار تعليمي؟ اضغط هنا

A magnetic Weyl semimetallic phase in thin films of Eu$_2$Ir$_2$O$_7$

359   0   0.0 ( 0 )
 نشر من قبل Xiaoran Liu Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in the pyrochlore iridates, which are only expected to reveal their topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available films. Here, we report on the discovery of the long-sought magnetic Weyl semi-metallic phase in (111)-oriented Eu$_2$Ir$_2$O$_7$ high-quality epitaxial thin films. The topological magnetic state shows an intrinsic anomalous Hall effect with colossal coercivity but vanishing net magnetization, which emerges below the onset of a peculiar magnetic phase with all-in-all-out antiferromagnetic ordering. The observed anomalous Hall conductivity arises from the non-zero Berry curvature emanated by Weyl node pairs near the Fermi level that act as sources and sinks of Berry flux, activated by broken cubic crystal symmetry at the top and bottom terminations of the thin film.



قيم البحث

اقرأ أيضاً

We have studied the effect of pressure on the pyrochlore iridate Eu$_2$Ir$_2$O$_7$, which at ambient pressure has a thermally driven insulator to metal transition at $T_{MI}sim120$,K. As a function of pressure the insulating gap closes, apparently co ntinuously, near $P sim 6$,GPa. However, rather than $T_{MI}$ going to zero as expected, the insulating ground state crosses over to a metallic state with a negative temperature coefficient of resistivity, calling into question the true nature of both ground states. The high temperature state also crosses over near 6 GPa, from an incoherent to a conventional metal, suggesting a connection between the high and the low temperature states.
We study the pyrochlore series (Eu$_{1-x}$Bi$_x$)$_2$Ir$_2$O$_7$ for $ 0 leq x leq 1$. We show that for small $x$, the lattice undergoes an anomalous contraction but the all-in/all-out and metal-to-insulator transitions remain robust, and the resisti vity approaches a $1/T$ dependence at low-T, suggesting proximity to the Weyl semimetallic phase, as previously predicted theoretically. At the boundary between Eu$_2$Ir$_2$O$_7$ and Bi$_2$Ir$_2$O$_7$ a qualitatively different ground state emerges, which is characterized by its unusual metallic behavior and absence of magnetic ordering at least down to $0.02$ K.
We present an extensive study on the effect of substrate orientation, strain, stoichiometry and defects on spin ice physics in Ho$_2$Ti$_2$O$_7$ thin films grown onto yttria-stabilized-zirconia substrates. We find that growth in different orientation s produces different strain states in the films. All films exhibit similar c-axis lattice parameters for their relaxed portions, which are consistently larger than the bulk value of 10.10 AA. Transmission electron microscopy reveals anti-site disorder and growth defects to be present in the films, but stuffing is not observed. The amount of disorder depends on the growth orientation, with the (110) film showing the least. Magnetization measurements at 1.8 K show the expected magnetic anisotropy and saturation magnetization values associated with a spin ice for all orientations; shape anisotropy is apparent when comparing in and out-of-plane directions. Significantly, only the (110) oriented films display the hallmark spin ice plateau state in magnetization, albeit less well-defined compared to the plateau observed in a single crystal. Neutron scattering maps on the more disordered (111) oriented films show the Q=0 phase previously observed in bulk materials, but the Q=X phase giving the plateau state remains elusive. We conclude that the spin ice physics in thin films is modified by defects and strain, leading to a reduction in the temperature at which correlations drive the system into the spin ice state.
113 - Lu Guo 2019
Rare earth pyrochlore Iridates (RE2Ir2O7) consist of two interpenetrating cation sublattices, the RE with highly-frustrated magnetic moments, and the Iridium with extended conduction orbitals significantly mixed by spin-orbit interactions. The coexis tence and coupling of these two sublattices create a landscape for discovery and manipulation of quantum phenomena such as the topological Hall effect, massless conduction bands, and quantum criticality. Thin films allow extended control of the material system via symmetry-lowering effects such as strain. While bulk Pr2Ir2O7 shows a spontaneous hysteretic Hall effect below 1.5K, we observe the effect at elevated temperatures up to 15K in epitaxial thin films on (111) YSZ substrates synthesized via solid phase epitaxy. Similar to the bulk, the lack of observable long-range magnetic order in the thin films points to a topological origin. We use synchrotron-based element-specific x-ray diffraction (XRD) and x-ray magnetic circular dichroism (XMCD) to compare powders and thin films to attribute the spontaneous Hall effect in the films to localization of the Ir moments. We link the thin film Ir local moments to lattice distortions absent in the bulk-like powders. We conclude that the elevated-temperature spontaneous Hall effect is caused by the topological effect originating either from the Ir or Pr sublattice, with interaction strength enhanced by the Ir local moments. This spontaneous Hall effect with weak net moment highlights the effect of vanishingly small lattice distortions as a means to discover topological phenomena in metallic frustrated magnetic materials.
The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho comp ound. At variance with the Ising Ho$^{3+}$ moment, we focus on the behavior of the quasi isotropic magnetic moment of the Gd$^{3+}$ ion at the rare-earth site. By means of macroscopic measurements and neutron scattering, we find a complex situation where different components of the magnetic moment contribute to two antiferromagnetic non-collinear arrangements: a high temperature all in - all out order induced by the Ir molecular field, and Palmer and Chalker correlations that tend to order at much lower temperatures. This is enabled by the anisotropic nature of the Gd-Gd interactions and requires a weak easy-plane anisotropy of the Gd$^{3+}$ moment due to the mixing of the ground state with multiplets of higher spectral terms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا