ﻻ يوجد ملخص باللغة العربية
Rare earth pyrochlore Iridates (RE2Ir2O7) consist of two interpenetrating cation sublattices, the RE with highly-frustrated magnetic moments, and the Iridium with extended conduction orbitals significantly mixed by spin-orbit interactions. The coexistence and coupling of these two sublattices create a landscape for discovery and manipulation of quantum phenomena such as the topological Hall effect, massless conduction bands, and quantum criticality. Thin films allow extended control of the material system via symmetry-lowering effects such as strain. While bulk Pr2Ir2O7 shows a spontaneous hysteretic Hall effect below 1.5K, we observe the effect at elevated temperatures up to 15K in epitaxial thin films on (111) YSZ substrates synthesized via solid phase epitaxy. Similar to the bulk, the lack of observable long-range magnetic order in the thin films points to a topological origin. We use synchrotron-based element-specific x-ray diffraction (XRD) and x-ray magnetic circular dichroism (XMCD) to compare powders and thin films to attribute the spontaneous Hall effect in the films to localization of the Ir moments. We link the thin film Ir local moments to lattice distortions absent in the bulk-like powders. We conclude that the elevated-temperature spontaneous Hall effect is caused by the topological effect originating either from the Ir or Pr sublattice, with interaction strength enhanced by the Ir local moments. This spontaneous Hall effect with weak net moment highlights the effect of vanishingly small lattice distortions as a means to discover topological phenomena in metallic frustrated magnetic materials.
Using {it ab initio} methods, we investigate the modification of the magnetic properties of the $m=2$ member of the strontium iridates Ruddlesden-Popper series Sr$_{m+1}$Ir$_{m}$O$_{3m+1}$, bilayer Sr$_3$Ir$_2$O$_7$, induced by epitaxial strain and o
The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in t
We uncover a strong anisotropy in both the anomalous Hall effect (AHE) and the magnetoresistance of the chiral spin states of Pr$_2$Ir$_2$O$_7$. The AHE appearing below 1.5 K at zero magnetic field shows hysteresis which is most pronounced for fields
We report on the evolution of the thermal metal-insulator transition in polycrystalline samples of Nd$_2$Ir$_2$O$_7$ upon hole-doping via substitution of Ca$^{2+}$ for Nd$^{3+}$. Ca substitution mediates a filling-controlled Mott-like transition with
Dirac and Weyl semimetals with linearly crossing bands are the focus of much recent interest in condensed matter physics. Although they host fascinating phenomena, their physics can be understood in terms of weakly interacting electrons. In contrast,