ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous Hall Effect enhanced by local Ir moments in epitaxial Pr$_2$Ir$_2$O$_7$ thin films

114   0   0.0 ( 0 )
 نشر من قبل Lu Guo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lu Guo




اسأل ChatGPT حول البحث

Rare earth pyrochlore Iridates (RE2Ir2O7) consist of two interpenetrating cation sublattices, the RE with highly-frustrated magnetic moments, and the Iridium with extended conduction orbitals significantly mixed by spin-orbit interactions. The coexistence and coupling of these two sublattices create a landscape for discovery and manipulation of quantum phenomena such as the topological Hall effect, massless conduction bands, and quantum criticality. Thin films allow extended control of the material system via symmetry-lowering effects such as strain. While bulk Pr2Ir2O7 shows a spontaneous hysteretic Hall effect below 1.5K, we observe the effect at elevated temperatures up to 15K in epitaxial thin films on (111) YSZ substrates synthesized via solid phase epitaxy. Similar to the bulk, the lack of observable long-range magnetic order in the thin films points to a topological origin. We use synchrotron-based element-specific x-ray diffraction (XRD) and x-ray magnetic circular dichroism (XMCD) to compare powders and thin films to attribute the spontaneous Hall effect in the films to localization of the Ir moments. We link the thin film Ir local moments to lattice distortions absent in the bulk-like powders. We conclude that the elevated-temperature spontaneous Hall effect is caused by the topological effect originating either from the Ir or Pr sublattice, with interaction strength enhanced by the Ir local moments. This spontaneous Hall effect with weak net moment highlights the effect of vanishingly small lattice distortions as a means to discover topological phenomena in metallic frustrated magnetic materials.

قيم البحث

اقرأ أيضاً

337 - Bongjae Kim , Peitao Liu , 2016
Using {it ab initio} methods, we investigate the modification of the magnetic properties of the $m=2$ member of the strontium iridates Ruddlesden-Popper series Sr$_{m+1}$Ir$_{m}$O$_{3m+1}$, bilayer Sr$_3$Ir$_2$O$_7$, induced by epitaxial strain and o xygen vacancies. Unlike the single layer compound Sr$_2$IrO$_4$, which exhibits a robust in-plane magnetic order, the energy difference between in-plane and out-of-plane magnetic orderings in Sr$_3$Ir$_2$O$_7$ is much smaller and it is expected that small external perturbations could induce magnetic transitions. Our results indicate that epitaxial strain yields a spin-flop transition, that is driven by the crossover between the intralayer $J_1$ and interlayer $J_2$ magnetic exchange interactions upon compressive strain. While $J_1$ is essentially insensitive to strain effects, the strength of $J_2$ changes by one order of magnitude for tensile strains $geq$ 3~%. In addition, our study clarifies that the unusual in-plane magnetic response observed in Sr$_3$Ir$_2$O$_7$ upon the application of an external magnetic field originates from the canting of the local magnetic moments due to oxygen vacancies, which tilt the octahedral networks - thereby allowing for noncollinear spin configurations.
The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in t he pyrochlore iridates, which are only expected to reveal their topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available films. Here, we report on the discovery of the long-sought magnetic Weyl semi-metallic phase in (111)-oriented Eu$_2$Ir$_2$O$_7$ high-quality epitaxial thin films. The topological magnetic state shows an intrinsic anomalous Hall effect with colossal coercivity but vanishing net magnetization, which emerges below the onset of a peculiar magnetic phase with all-in-all-out antiferromagnetic ordering. The observed anomalous Hall conductivity arises from the non-zero Berry curvature emanated by Weyl node pairs near the Fermi level that act as sources and sinks of Berry flux, activated by broken cubic crystal symmetry at the top and bottom terminations of the thin film.
We uncover a strong anisotropy in both the anomalous Hall effect (AHE) and the magnetoresistance of the chiral spin states of Pr$_2$Ir$_2$O$_7$. The AHE appearing below 1.5 K at zero magnetic field shows hysteresis which is most pronounced for fields cycled along the [111] direction. This hysteresis is compatible with the field-induced growth of domains composed by the 3-in 1-out spin states which remain coexisting with the 2-in 2-out spin ice manifold once the field is removed. Only for fields applied along the [111] direction, we observe a large positive magnetoresistance and Shubnikov de Haas oscillations above a metamagnetic critical field. These observations suggest the reconstruction of the electronic structure of the conduction electrons by the field-induced spin-texture.
We report on the evolution of the thermal metal-insulator transition in polycrystalline samples of Nd$_2$Ir$_2$O$_7$ upon hole-doping via substitution of Ca$^{2+}$ for Nd$^{3+}$. Ca substitution mediates a filling-controlled Mott-like transition with minimal resolvable structural changes and without altering site symmetry. Local structure confirms that Ca substitution does not result in local chemical phase separation, and absorption spectroscopy establishes that Ir cations maintain a spin-orbit entangled electronic configuration. The metal-insulator transition coincides with antiferromagnetic ordering on the Ir sublattice for all measured samples, and both decrease in onset temperature with Ca content. Weak low-temperature upturns in susceptibility and resistivity for samples with high Ca content suggest that Nd sublattice antiferromagnetism continues to couple to carriers in the metallic regime.
Dirac and Weyl semimetals with linearly crossing bands are the focus of much recent interest in condensed matter physics. Although they host fascinating phenomena, their physics can be understood in terms of weakly interacting electrons. In contrast, more than 40 years ago, Abrikosov pointed out that quadratic band touchings are generically strongly interacting. We have performed terahertz spectroscopy on films of the conducting pyrochlore Pr$_2$Ir$_2$O$_7$, which has been shown to host a quadratic band touching. A dielectric constant as large as $tilde{varepsilon }/epsilon_0 sim 180 $ is observed at low temperatures. In such systems the dielectric constant is a measure of the relative scale of interactions, which are therefore in our material almost two orders of magnitude larger than the kinetic energy. Despite this, the scattering rate exhibits a $T^2$ dependence, which shows that for finite doping a Fermi liquid state survives, however with a scattering rate close to the maximal value allowed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا