ﻻ يوجد ملخص باللغة العربية
We analyze the performance of membrane filters represented by pore networks using two criteria: 1) total volumetric throughput of filtrate over the filter lifetime and 2) accumulated foulant concentration in the filtrate. We first formulate the governing equations of fluid flow on a general network, and we model transport and adsorption of particles (foulants) within the network by imposing an advection equation with a sink term on each pore (edge) as well as conservation of fluid and foulant volumetric flow rates at each pore junction (network vertex). Such a setup yields a system of partial differential equations on the network. We study the influence of three geometric network parameters on filter performance: 1) average number of neighbors of each vertex; 2) initial total void volume of the pore network; and 3) tortuosity of the network. We find that total volumetric throughput depends more strongly on the initial void volume than on average number of neighbors. Tortuosity, however, turns out to be a universal parameter, leading to almost perfect collapse of all results for a variety of different network architectures. In particular, the accumulated foulant concentration in the filtrate shows an exponential decay as tortuosity increases.
We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it fe
A simple scheme for incompressible, constant density flows is presented, which avoids odd-even decoupling for the Laplacian on a collocated grids. Energy stability is implied by maintaining strict energy conservation. Momentum is conserved. Arbitrary
In this paper, we propose a lattice Boltzmann (LB) model for the generalized coupled cross-diffusion-fluid system. Through the direct Taylor expansion method, the proposed LB model can correctly recover the macroscopic equations. The cross diffusion
We present a novel computational modeling framework to numerically investigate fluid-structure interaction in viscous fluids using the phase field embedding method. Each rigid body or elastic structure immersed in the incompressible viscous fluid mat
Floating offshore structures often exhibit low-frequency oscillatory motions in the horizontal plane, with amplitudes in the same order as their characteristic dimensions and larger than the corresponding wave-frequency responses, making the traditio