ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid phase field method for fluid-structure interactions in viscous fluids

190   0   0.0 ( 0 )
 نشر من قبل Qi Hong
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a novel computational modeling framework to numerically investigate fluid-structure interaction in viscous fluids using the phase field embedding method. Each rigid body or elastic structure immersed in the incompressible viscous fluid matrix, grossly referred to as the particle in this paper, is identified by a volume preserving phase field. The motion of the particle is driven by the fluid velocity in the matrix for passive particles or combined with its self-propelling velocity for active particles. The excluded volume effect between a pair of particles or between a particle and the boundary is modeled by a repulsive potential force. The drag exerted to the fluid by a particle is assumed proportional to its velocity. When the particle is rigid, its state is described by a zero velocity gradient tensor within the nonzero phase field that defines its profile and a constraining stress exists therein. While the particle is elastic, a linear constitutive equation for the elastic stress is provided within the particle domain. A hybrid, thermodynamically consistent hydrodynamic model valid in the entire computational domain is then derived for the fluid-particle ensemble using the generalized Onsager principle accounting for both rigid and elastic particles. Structure-preserving numerical algorithms are subsequently developed for the thermodynamically consistent model. Numerical tests in 2D and 3D space are carried out to verify the rate of convergence and numerical examples are given to demonstrate the usefulness of the computational framework for simulating fluid-structure interactions for passive as well as self-propelling active particles in a viscous fluid matrix.

قيم البحث

اقرأ أيضاً

Transport of viscous fluid through porous media is a direct consequence of the pore structure. Here we investigate transport through a specific class of two-dimensional porous geometries, namely those formed by fluid-mechanical erosion. We investigat e the tortuosity and dispersion by analyzing the first two statistical moments of tracer trajectories. For most initial configurations, tortuosity decreases in time as a result of erosion increasing the porosity. However, we find that tortuosity can also increase transiently in certain cases. The porosity-tortuosity relationships that result from our simulations are compared with models available in the literature. Asymptotic dispersion rates are also strongly affected by the erosion process, as well as by the number and distribution of the eroding bodies. Finally, we analyze the pore size distribution of an eroding geometry. The simulations are performed by combining a high-fidelity boundary integral equation solver for the fluid equations, a second-order stable time stepping method to simulate erosion, and new numerical methods to stably and accurately resolve nearly-touching eroded bodies and particle trajectories near the eroding bodies.
In this paper, we propose a lattice Boltzmann (LB) model for the generalized coupled cross-diffusion-fluid system. Through the direct Taylor expansion method, the proposed LB model can correctly recover the macroscopic equations. The cross diffusion terms in the coupled system are modeled by introducing additional collision operators, which can be used to avoid special treatments for the gradient terms. In addition, the auxiliary source terms are constructed properly such that the numerical diffusion caused by the convection can be eliminated. We adopt the developed LB model to study two important systems, i.e., the coupled chemotaxis-fluid system and the double-diffusive convection system with Soret and Dufour effects. We first test the present LB model through considering a steady-state case of coupled chemotaxis-fluid system, then we analyze the influences of some physical parameters on the formation of sinking plumes. Finally, the double-diffusive natural convection system with Soret and Dufour effects is also studied, and the numerical results agree well with some previous works.
We present a particle method for estimating the curvature of interfaces in volume-of-fluid simulations of multiphase flows. The method is well suited for under-resolved interfaces, and it is shown to be more accurate than the parabolic fitting that i s employed in such cases. The curvature is computed from the equilibrium positions of particles constrained to circular arcs and attracted to the interface. The proposed particle method is combined with the method of height functions at higher resolutions, and it is shown to outperform the current combinations of height functions and parabolic fitting. The algorithm is conceptually simple and straightforward to implement on new and existing software frameworks for multiphase flow simulations thus enhancing their capabilities in challenging flow problems. We evaluate the proposed hybrid method on a number of two- and three-dimensional benchmark flow problems and illustrate its capabilities on simulations of flows involving bubble coalescence and turbulent multiphase flows.
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow pr oblems into two single-medium cases by defining the ghost fluids status in terms of the predicted the interface status, which makes the material interface invisible. For the single medium flow case, we adapt between the linear upwind scheme and the WENO scheme automatically by identifying the regions of the extreme points for the reconstruction polynomial as same as the hybrid WENO scheme [50]. Instead of calculating their exact locations, we only need to know the regions of the extreme points based on the zero point existence theorem, which is simpler for implementation and saves computation time. Meanwhile, it still keeps the robustness and has high efficiency. Extensive numerical results for both one and two dimensional two-medium flow problems are performed to demonstrate the good performances of the proposed method.
361 - J.D. Carter , A. Govan 2015
In this paper, we derive a viscous generalization of the Dysthe (1979) system from the weakly viscous generalization of the Euler equations introduced by Dias, Dyachenko, and Zakharov (2008). This viscous Dysthe system models the evolution of a weakl y viscous, nearly monochromatic wave train on deep water. It contains a term which provides a mechanism for frequency downshifting in the absence of wind and wave breaking. The equation does not preserve the spectral mean. Numerical simulations demonstrate that the spectral mean typically decreases and that the spectral peak decreases for certain initial conditions. The linear stability analysis of the plane-wave solutions of the viscous Dysthe system demonstrates that waves with wave numbers closer to zero decay more slowly than waves with wave numbers further from zero. Comparisons between experimental data and numerical simulations of the NLS, dissipative NLS, Dysthe, and viscous Dysthe systems establish that the viscous Dysthe system accurately models data from experiments in which frequency downshifting was observed and experiments in which frequency downshift was not observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا