ﻻ يوجد ملخص باللغة العربية
A simple scheme for incompressible, constant density flows is presented, which avoids odd-even decoupling for the Laplacian on a collocated grids. Energy stability is implied by maintaining strict energy conservation. Momentum is conserved. Arbitrary order in space and time can easily be obtained. The conservation properties hold on transformed grids.
We present a fully conservative, skew-symmetric finite difference scheme on transformed grids. The skew-symmetry preserves the kinetic energy by first principles, simultaneously avoiding a central instability mechanism and numerical damping. In contr
In this paper, we develop a new free-stream preserving (FP) method for high-order upwind conservative finite-difference (FD) schemes on the curvilinear grids. This FP method is constrcuted by subtracting a reference cell-face flow state from each cel
In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass balance stabilization te
This paper develops the high-order accurate entropy stable (ES) finite difference schemes for the shallow water magnetohydrodynamic (SWMHD) equations.They are built on the numerical approximation of the modified SWMHD equations with the Janhunen sour
We introduce a hybrid method to couple continuous Galerkin finite element methods and high-order finite difference methods in a nonconforming multiblock fashion. The aim is to optimize computational efficiency when complex geometries are present. The