ﻻ يوجد ملخص باللغة العربية
We present $it{CosmoPower}$, a suite of neural cosmological power spectrum emulators providing orders-of-magnitude acceleration for parameter estimation from two-point statistics analyses of Large-Scale Structure (LSS) and Cosmic Microwave Background (CMB) surveys. The emulators replace the computation of matter and CMB power spectra from Boltzmann codes; thus, they do not need to be re-trained for different choices of astrophysical nuisance parameters or redshift distributions. The matter power spectrum emulation error is less than $0.4%$ in the wavenumber range $k in [10^{-5}, 10] , mathrm{Mpc}^{-1}$, for redshift $z in [0, 5]$. $it{CosmoPower}$ emulates CMB temperature, polarisation and lensing potential power spectra in the $5sigma$ region of parameter space around the $it{Planck}$ best fit values with an error $lesssim 20%$ of the expected shot noise for the forthcoming Simons Observatory. $it{CosmoPower}$ is showcased on a joint cosmic shear and galaxy clustering analysis from the Kilo-Degree Survey, as well as on a Stage IV $it{Euclid}$-like simulated cosmic shear analysis. For the CMB case, $it{CosmoPower}$ is tested on a $it{Planck}$ 2018 CMB temperature and polarisation analysis. The emulators always recover the fiducial cosmological constraints with differences in the posteriors smaller than sampling noise, while providing a speed-up factor up to $O(10^4)$ to the complete inference pipeline. This acceleration allows posterior distributions to be recovered in just a few seconds, as we demonstrate in the $it{Planck}$ likelihood case. $it{CosmoPower}$ is written entirely in Python, can be interfaced with all commonly used cosmological samplers and is publicly available https://github.com/alessiospuriomancini/cosmopower .
We present a large-scale Bayesian inference framework to constrain cosmological parameters using galaxy redshift surveys, via an application of the Alcock-Paczynski (AP) test. Our physical model of the non-linearly evolved density field, as probed by
Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having mor
Analyzes of next-generation galaxy data require accurate treatment of systematic effects such as the bias between observed galaxies and the underlying matter density field. However, proposed models of the phenomenon are either numerically expensive o
The tightest and most robust cosmological results of the next decade will be achieved by bringing together multiple surveys of the Universe. This endeavor has to happen across multiple layers of the data processing and analysis, e.g., enhancements ar
Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from