ﻻ يوجد ملخص باللغة العربية
Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having more manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an interferometric observation on a finite patch with incomplete uv-plane coverage, a finite beam size and a realistic noise model. With a computational complexity of O(n^{3/2}), n being the data size, Gibbs sampling provides an efficient method for analyzing upcoming cosmology observations.
The Epoch of Reionization (EoR) depends on the complex astrophysics governing the birth and evolution of the first galaxies and structures in the intergalactic medium. EoR models rely on cosmic microwave background (CMB) observations, and in particul
We briefly review our work about the polarized foreground contamination of the Cosmic Microwave Background maps. We start by summarizing the main properties of the polarized cosmological signal, resulting in electric (E) and magnetic (B) components o
We present $it{CosmoPower}$, a suite of neural cosmological power spectrum emulators providing orders-of-magnitude acceleration for parameter estimation from two-point statistics analyses of Large-Scale Structure (LSS) and Cosmic Microwave Background
We develop an analytic model for the power spectra of polarized filamentary structures as a way to study the Galactic polarization foreground to the Cosmic Microwave Background. Our approach is akin to the cosmological halo-model framework, and repro
Upcoming measurements of the small-scale primary cosmic microwave background (CMB) temperature and polarization power spectra ($TT$/$TE$/$EE$) are anticipated to yield transformative constraints on new physics, including the effective number of relat